Diameters of random bipartite graphs

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Z. W. Birnbaum, J. D. Esary andS. C. Saunders, Multicomponent systems and structures and their reliability,Technometrics 3 (1961), 55–77.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    B. Bollobás,Graph Theory, Springer-Verlag, New York, 1979.

    Google Scholar 

  3. [3]

    B. Bollobás, The diameter of random graphs,Trans. Amer. Math. Soc. 267 (1981), 41–52.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    B. Bollobás, Counting coloured graphs of high connectivity,Canad. J. Math. 33 (1981), 476–484.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    B. Bollobás,Random Graphs, in preparation.

  6. [6]

    L. Comtet,Advanced Combinatorics, D. Reidel Publ. Co. Dordrecht, Holland, 1974.

    Google Scholar 

  7. [7]

    P. Erdős andA. Rényi, On the strength of connectedness of a random graph.Acta Math. Acad Sci. Hungar. 12 (1961), 261–267.

    Article  MathSciNet  Google Scholar 

  8. [8]

    V. L. Klee andD. G. Larman, Diameters of random graphs,Canad. J. Math. 33 (1981), 618–640.

    MATH  MathSciNet  Google Scholar 

  9. [9]

    V. L. Klee, D. G. Larman andE. M. Wright, The diameter of almost all bipartite graphs,Studia Sci. Math. Hungar. 15 (1980), 39–43.

    MATH  MathSciNet  Google Scholar 

  10. [10]

    V. L. Klee D. G. Larman andE. M. Wright, The proportion of labelled bipartite graphs which are connected,J. London Math. Soc. 24 (1981), 397–404.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    A. D. Korshunov, On the diameter of random graphs,Soviet Mat. Dokl. 12 (1971), 302–305.

    MATH  Google Scholar 

  12. [12]

    A. D. Korshunov, Solution of a problem of Erdős and Rényi on Hamilton cycles in nonoriented graphs,Soviet Mat. Dokl. 17 (1976), 760–764.

    MATH  Google Scholar 

  13. [13]

    J. W. Moon andL. Moser, Almost all (0, 1) matrices are primitive,Studia Sci. Math. Hungar. 1 (1966), 153–156.

    MATH  MathSciNet  Google Scholar 

  14. [14]

    L. Pósa, Hamiltonian circuits in random graphs,Discrete Math. 14 (1976), 359–364.

    MATH  Article  MathSciNet  Google Scholar 

  15. [15]

    Thanh le Cong, Estimates of some parameters of finite graphs with applications (in Russian),Elektr. Inform. Kyber. 13 (1977), 505–521.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Dedicated to Paul Erdős on his seventieth birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bollobás, B., Klee, V. Diameters of random bipartite graphs. Combinatorica 4, 7–19 (1984). https://doi.org/10.1007/BF02579152

Download citation

AMS subject classification (1980)

  • 05 C 40
  • 60 C 05