Abstract
The aim of this paper is to show that the minimum Hadwiger number of graphs with average degreek isO(k/√logk). Specially, it follows that Hadwiger’s conjecture is true for almost all graphs withn vertices, furthermore ifk is large enough then for almost all graphs withn vertices andnk edges.
This is a preview of subscription content, access via your institution.
References
- [1]
P. Erdős, J. Spencer,Probabilistic methods in combinatorics, Academic Press, New York-London, 1974.
- [2]
H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Viert.Naturforsch. Ges. Zürich,88 (1943), 133–142.
- [3]
A. D. Korshunov, On the chromatic number of graphs onn vertices (in Russian),Metody diskretnogo analiza v teorii bulevyh funkcij i skhem,35 (1980), 15–45.
- [4]
A. V. Kostochka, On the minimum Hadwiger number of graphs with given average degree (in Russian),submitted to Diskretnij Analiz.
- [5]
W. Mader, Homomorphiesätze für Graphen,Math. Annalen,178 (1968), 154–168.
- [6]
Z. Miller, Contractions of graphs: A theorem of Ore and an extremal problem,Discrete Math.,21 (1978), 261–273.
- [7]
K. Wagner, Beweis einer Abschwächung der Hadwiger—Vermutung,Math. Annalen,153 (1964), 139–141.
- [8]
B. Zelinka, On some graph-theoretical problems of V. G. Vizing,Cas. Pestov. Math.,98 (1973), 56–66.
- [9]
A. A. Zykov, On the edge number of graphs with no greater Hadwiger number than 4,Prikladnaja matematika i programmirovanije,7 (1972), 52–55.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Kostochka, A.V. Lower bound of the hadwiger number of graphs by their average degree. Combinatorica 4, 307–316 (1984). https://doi.org/10.1007/BF02579141
Received:
Issue Date:
AMS subject classification 1980)
- 05 C 10
- 05 C 15
- 60 C 05