Top

, Volume 9, Issue 1, pp 91–114 | Cite as

On a relative measure of skill for games with chance elements

  • Peter Borm
  • Ben van der Genugten
Article

Abstract

In various countries, including the Netherlands and Austria, legislation is such that the question whether a specific game should be considered as a game of chance or as a game of skill is predominant in the exploitation decision of private casinos. This paper aims for an objective and operational criterium to quantify the relative level of skill with respect to chance of games in order to provide a juridical tool for classification. The various concepts are illustrated by means of variations of Poker.

Key Words

Games skill chance elements poker 

AMS subject classification

91A10 91A60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown G.W. (1949).Some Notes on Computation of Game Solutions. RAND Report P.78, The RAND Corporation, Santa Monica, California.Google Scholar
  2. De Vos J.C. (1997).Golden Ten and Related Trajectory Games, Thesis, Tilburg University.Google Scholar
  3. Epstein R.A. (1977).The Theory of Gambling and Statistical Logic. Academic Press.Google Scholar
  4. Grossmann W. (1997). Aspects of Chance in 7-Card Stud (In German). Report, Institut für Statistik, Operations Research und Computerverfahren, Universität Wien.Google Scholar
  5. Karlin S. (1959a).Matrix Games, Programming and Mathematical Economics, vol. I, Pergamon Press.Google Scholar
  6. Karlin S. (1959b).Mathematical Methods and Theory in Games, Programming and Economics, vol. II, chapter 9, Pergamon Press, London.Google Scholar
  7. Larkey P., Kadane J.B., Austin R. and Zamir S. (1997). Skill in games.Management Science 43, 596–609.CrossRefGoogle Scholar
  8. Neumann, J. von and Morgenstern O. (1944).Theory of Games and Economic Behavior. Princeton University Press.Google Scholar
  9. Packel E. (1981).The Mathematics of Games and Gambling. The Mathematical Association of America.Google Scholar
  10. Robinson J. (1950). An Iterative Method of Solving a Game.Annals of Mathematics 54, 296–301.CrossRefGoogle Scholar
  11. Sakaguchi M. (1993). Information Structures and Perfect Information in Some Two-Person Poker.Math. Japonica 38, 743–755.Google Scholar
  12. Sakaguchi M. and Mazalov V.V. (1996). Two-Person HI-LO Poker - Stud and Draw -, I.Math. Japonica 44, 39–53.Google Scholar
  13. Scarne J. (1990).Guide to Modern Poker. Simon and Schuster.Google Scholar
  14. Shapiro H.N. (1958). Note on a Computation Method in the Theory of Games.Communications on Pure and Applied Mathematics 11, 587–593.Google Scholar
  15. Tamburin H. (1993).References Guide to Casino Gambling. Research Service Ltd. Mobile.Google Scholar
  16. Van der Genugten B.B. (1993).Blackjack in Holland Casino’s: Hoe de Dealer te verslaan!. Tilburg University Press, Tilburg.Google Scholar
  17. Van der Genugten B.B. (1997). Blackjack in Holland Casino’s: Basic, Optimal and Winning Strategies.Statistica Neerlandica (forthcoming).Google Scholar
  18. Van der Genugten B.B. and Borm P. (1991). How to Distinguish between Games of Chance and Games of Skill: An Application to Golden Ten (In Dutch). Report, Department of Econometrics, Tilburg University.Google Scholar
  19. Van der Genugten B.B. and Borm P. (1994). A Comparison Between Games with Chance Elements w.r.t. Skill (In Dutch). Report, Department of Econometrics, Tilburg University.Google Scholar
  20. Van der Genugten B.B. and Borm P. (1996). On the Level of Skill and the Diagnostic Criteria (In Dutch). Report, Department of Econometrics, Tilburg University.Google Scholar
  21. Van der Genugten B.B. (1997). A Method to Inspect Slotmachines (In Dutch). Report, EIT, Tilburg University.Google Scholar
  22. Van der Genugten B.B., Borm P. and Grossmann M. (1997). Addendum to Two Reports on Games of Skill. Report, Department of Econometrics, Tilburg University.Google Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2001

Authors and Affiliations

  • Peter Borm
    • 1
  • Ben van der Genugten
    • 1
  1. 1.Department of Econometrics and CentER for Economic ResearchTilburg UniversityTilburgThe Netherlands

Personalised recommendations