Skip to main content
Log in

On self-regular IPMs

  • Published:
Top Aims and scope Submit manuscript

Abstract

Primal-dual interior-point methods (IPMs) have shown their power in solving large classes of optimization problems. However, at present there is still a gap between the practical behavior of these algorithms and their theoretical worst-case complexity results, with respect to the strategies of updating the duality gap parameter in the algorithm. The so-called small-update IPMs enjoy the best known theoretical worst-case iteration bound, but work very poorly in practice. To the contrary, the so-called large-update IPMs have superior practical performance but with relatively weaker theoretical results. In this paper we discuss the new algorithmic variants and improved complexity results with respect to the new family of Self-Regular proximity based IPMs for Linear Optimization problems, and their generalizations to Conic and Semidefinite Optimization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler I. and Alizadeh F. (1995). Primal-Dual Interior Point Algorithms for Convex Quadratically Constrained and Semidefinite Optimization Problems. Technical Report RRR-111-95, Rutcor, Rutgers Center for Operations Research, P.O. Box 5062, New Brunswick, NJ.

    Google Scholar 

  • Achtziger W., Bendsoe M., Ben-Tal A. and J. Zowe (1992). Equivalent Displacement Based Formulations for Maximum Strength Truss Topology Design.Impact of Computing in Science and Engineering 4, 315–345.

    Article  Google Scholar 

  • Alizadeh F. (1995). Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization.SIAM Journal on Optimization 5, 13–51.

    Article  Google Scholar 

  • Alizadeh F., Haeberly J.-P.A. and Overton M.L. (1997). Complementarity and Nondegeneracy in Semidefinite Programming.Mathematical Programming 77, 111–128.

    Article  Google Scholar 

  • Andersen E.D., Gondzio J., Mészáros Cs. and Xu X. (1996). Implementation of Interior Point Methods for Large Scale Linear Programming. In: Terlaky T. (ed.),Interior Point Methods of Mathematical Programming. Kluwer Academic Publishers, 189–252.

  • Andersen E.D., Roos C. and Terlaky T. (2003). On Implementing a Primal-Dual Interior-Point Method for Conic Quadratic Optimization.Mathematical Programming 95, 249–277.

    Article  Google Scholar 

  • Anjos M. and Vanelli A. (2002). An Attractor-Repeller Approach to Floorplanning.Mathematical Methods of Operations Research 56, 3–27.

    Article  Google Scholar 

  • Bai Y.Q. and Roos C. (2004). A Primal-Dual Interior-Point Method Based on a New Kernel Function with Linear Growth Rate.Proceedings Perth Industrial Optimization Meeting (to appear).

  • Bai Y.Q., Roos C. and El Ghami M. (2003). A New Efficient Large-Update Primal-Dual Interior-Point Method Based on a Finite Barrier.SIAM Journal on Optimization 13, 766–782.

    Article  Google Scholar 

  • Bai Y.Q., Roos C. and El Ghami M. (2005). A Comparative Study of New Barrier Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization.SIAM Journal on Optimization 1, 1–128.

    Google Scholar 

  • Bellman R. (1995).Introduction to Matrix Analysis. Classics in Applied Mathematics, SIAM 12.

  • Bendose M., Ben-Tal A. and Zowe J. (1994). Optimization Methods for Truss Geometry and Topology Design.Structural Optimization 7, 141–159.

    Article  Google Scholar 

  • Ben-Tal A. and Nemirovski A. (2001).Convex Optimization in Engineering: Modeling, Analysis, Algorithms. MPS-SIAM Series on Optimization, SIAM.

  • Boyd S., El Gahaoui L., Feron E. and Balakrishnan V. (1994).Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics 15.

  • Cheng F.T. and Orin D.E. (1990). Efficient Algorithm for Optimal Force Distribution — the Compact-Dual LP Method.IEEE Transactions on Robotics and Automation 6, 178–187.

    Article  Google Scholar 

  • Cheney E.W. (1982).Introduction to Approximation Theory. Chelsea Publishing Company.

  • Faraut J. and Korányi A. (1994).Analysis on Symmetric Cones. Oxford University Press.

  • Fares B., Noll D. and Apkarian P. (2002). Robust Control via Sequential Semidefinite Programming.SIAM Journal on Control and Optimization 40, 1791–1820.

    Article  Google Scholar 

  • Faybusovich L. (1997). Euclidean Jordan Algebras and Interior-Point Algorithms.Positivity 1, 331–357.

    Article  Google Scholar 

  • Faybusovich L. (1998). A Jordan-Algebraic Approach to Potential-Reduction Algorithms. Technical Report, Department of Mathematics, University of Notre Dame, IN.

    Google Scholar 

  • Fukushima M., Luo Z.Q. and Tseng P. (2001). Smoothing Functions for Second-Order-Cone Complementarity Problems.SIAM Journal on Optimization 12, 438–460.

    Article  Google Scholar 

  • Goemans M.X. (1997). Semidefinite Programming in Combinatorial Optimization.Mathematical Programming 79, 143–161.

    Article  Google Scholar 

  • Güler O. (1994). Limiting Behavior of the Weighted Central Paths in Linear Programming.Mathematical Programming 65, 215–228.

    Article  Google Scholar 

  • Güler O. and Ye Y. (1993). Convergence Behavior of Interior Point Algorithms.Mathematical Programming 60, 215–228.

    Article  Google Scholar 

  • Helmberg C., Rendl F., Vanderbei R.J. and Wolkowicz H. (1996). An Interior-Point Method for Semidefinite Programming.SIAM Journal on Optimization 6, 342–361.

    Article  Google Scholar 

  • Hung P. and Ye Y. (1996). An AsymptoticallyO(√nL)-Iteration Path-Following Linear Programming Algorithm that Uses Long Steps.SIAM Journal on Optimization 6, 570–586.

    Article  Google Scholar 

  • Jansen B., Roos C., Terlaky T. and Ye Y. (1997). Improved Complexity Using Higher Order Correctors for Primal-Dual Dikin Affine Scaling.Mathematical Programming, Series B 76, 117–130.

    Article  Google Scholar 

  • Karmarkar N.K. (1984). A New Polynomial-Time Algorithm for Linear Programming.Combinatorica 4, 373–395.

    Google Scholar 

  • Klerk E. de (2002).Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Applied Optimization Series, 65. Kluwer Academic Publishers.

  • Klerk E. de, Roos C. and Terlaky T. (1998). Infeasible-Start Semidefinite Programming Algorithms via Self-Dual Embeddings. In: Pardalos P. and Wolkowicz H. (eds.),Topics in Semidefinite and Interior-Point Methods. American Mathematical Society, 215–236.

  • Kojima M., Shindoh S. and Hara S. (1997). Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices.SIAM Journal on Optimization 7, 86–125.

    Article  Google Scholar 

  • Kojima M., Mizuno S. and Yoshise A. (1989). A Primal-Dual Interior Point Algorithm for Linear Programming. In: Megiddo N. (ed.)Progress in Mathematical Programming: Interior Point and Related Methods. Springer Verlag, 29–47.

  • Lasserre J.B. (2002). An Explicit Exact SDP Relaxation for Nonlinear 0–1 Programs.SIAM Journal on Optimization 12, 756–769.

    Article  Google Scholar 

  • Laurent M. (2003). Lower Bound for the Number of Iterations in Semidefinite Relaxations for the Cut Polytope.Mathematics of Operations Research 28, 871–883.

    Article  Google Scholar 

  • Lebret H. and Boyd S. (1997). Antenna Array Pattern Synthesis via Convex Optimization.IEEE Transactions on Signal Processing 45, 526–532.

    Article  Google Scholar 

  • Li L., Luo Z.Q., Davidson T.N., Wong K.M. and Bosse E. (2002). Robust Filtering via Semidefinite Programming with Applications to Target Tracking.SIAM Journal on Optimization 12, 740–755.

    Article  Google Scholar 

  • Lobo M.S., Vandenberghe L., Boyd S. and Lebret H. (1998). Applications of Second-Order Cone Programming.Linear Algebra and Its Applications 284, 193–228.

    Article  Google Scholar 

  • Megiddo N. (1986). Pathways to the Optimal Set in Linear Programming. In: Megiddo N. (ed.)Progress in Mathematical Programming: Interior Point and Related Methods. Springer Verlag, 131–158. Also in Proceedings of the 6th Mathematical Programming Symposium of Japan, Nagoya, Japan, 1986.

  • Mizuno S., Todd M.J. and Ye Y. (1993). On Adaptive Step Primal-Dual Interior-Point Algorithms for Linear Programming.Mathematics of Operations Research 18, 964–981.

    Article  Google Scholar 

  • Monteiro R.D.C., Adler I. and Resende M.G.C. (1990). A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and its Power Series Extensions.Mathematics of Operations Research 15, 191–214.

    Google Scholar 

  • Monteiro R.D.C. (1997). Primal-Dual Path Following Algorithm for Semidefinite Programming.SIAM Journal on Optimization 7, 663–678.

    Article  Google Scholar 

  • Nesterov Y.E. and Nemirovski A.S. (1994).Interior Point Polynomial Algorithms in Convex Programming. SIAM Studies in Applied Mathematics 13. SIAM.

  • Nesterov Y.E. and Todd M.J. (1997). Self-Scaled Barriers and Interior-Point Methods for Convex Programming.Mathematics of Operations Research 22, 1–42.

    Google Scholar 

  • Nesterov Y.E. and Todd M.J. (1998). Primal-Dual Interior Point Methods for Self-Scaled Cones.SIAM Journal on Optimization 8, 324–364.

    Article  Google Scholar 

  • Peng J., Roos C. and Terlaky T. (2001). A New Efficient Large-Update Interior-Point Method for Linear Optimization.Journal of Computational Technologies 6, 61–80.

    Google Scholar 

  • Peng J., Roos C. and Terlaky T. (2002a). A New Class of Polynomial Primal-Dual Methods for Linear and Semidefinite Optimization.European Journal of Operations Research 143, 234–256.

    Article  Google Scholar 

  • Peng J., Roos C. and Terlaky T. (2002b).Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Methods. Princeton University Press.

  • Peng J., Roos C. and Terlaky T. (2002c). Self-Regular Functions and New Search Directions for Linear and Semidefinite Optimization.Mathematical Programming 93, 129–171.

    Article  Google Scholar 

  • Peng J., Roos C. and Terlaky T. (2002d). Primal-Dual Interior-Point Methods for Second-Order Conic Optimization Based on Self-Regular Proximities.SIAM Journal on Optimization 13, 179–203.

    Article  Google Scholar 

  • Peng J. and Terlaky T. (2002). A Dynamic Large-Update Primal-Dual Interior-Point Method for Linear Optimization.Optimization Methods and Software 17, 1077–1104.

    Article  Google Scholar 

  • Peng J., Terlaky T. and Zhao Y.B. (2003). A Predictor-Corrector Algorithm for Linear Optimization Based on a Specific Self-Regular Proximity Function.SIAM Journal on Optimization (to appear).

  • Renegar J. (2001).A Mathematical View of Interior-Point Methods in Convex Optimization. SIAM.

  • Roos C., Terlaky T. and Vial J.-Ph. (1997).Theory and Algorithms for Linear Optimization. An Interior Point Approach. Wiley.

  • Salahi M., Terlaky T. and Zhang G. (2003). The Complexity of Self-Regular Proximity Based Infeasible IPMs. Technical Report 2003/3, Advanced Optimization Lab. Department of Computing and Software, McMaster University. http://www.cas.mcmaster.ca/~oplab/publication.

  • Salahi M. and Terlaky T. (2004). An Adaptive Large Neighborhood Self-Regular Predictor-Corrector IPM for Linear Optimization.

  • Salahi M. and Terlaky T. (2005). An Adaptive Self-Regular Proximity Based Large-Update Interior Point Methods for LO.Optimization Methods and Software 20, 169–185.

    Article  Google Scholar 

  • Sonnevend G. (1986). An “Analytic Center” for Polyhedrons and New Classes of Global Algorithms for Linear (Smooth, Convex) Programming. In: Prékopa A., Szelezsán J. and Strazicky B. (eds.),System Modeling and Optimization: Proceeding of the 12th IFIP Conference, Lecture Notes in Control and Information Sciences, 84. Springer Verlag, 866–876.

  • Sturm J.F. (1999). Theory and Algorithms of Semidefinite Programming. In: Frenk H., Roos C., Terlaky T. and Zhang S. (eds.),High Performance Optimization. Kluwer Academic Publishers, 1–194.

  • Sturm J.F. and Zhang S. (1999). Symmetric Primal-Dual Path Following Algorithms for Semidefinite Programming.Applied Numerical Mathematics 29, 301–315.

    Article  Google Scholar 

  • Todd M.J. (1999). A Study of Search Directions in Primal-Dual Interior-Point Methods for Semidefinite Programming.Optimization Methods and Software 11, 1–46.

    Google Scholar 

  • Todd M.J., Toh K.C. and Tütüncü R.H. (1998). On the Nesterov-Todd Direction in Semidefinite Programming.SIAM Journal on Optimization 8, 769–796.

    Article  Google Scholar 

  • Tsuchiya T. (1997). A Polynomial Primal-Dual Path-Following Algorithm for Second-Order Cone Programming. Technical Report 649, The Institute of Statistical Mathematics, Tokyo, Japan.

    Google Scholar 

  • Tsuchiya T. (1999). A Convergent Analysis of the Scaling-Invariant Primal-Dual Path-Following Algorithms for Second-Order Cone Programming.Optimization Methods and Software 11/12, 141–182, 1999.

    Google Scholar 

  • Vandenberghe L. and Boyd S. (1996). Semidefinite Programming.SIAM Review 38, 49–95.

    Article  Google Scholar 

  • Wolkowicz H., Saigal R. and Vandenberghe L. (2000).Handbook of Semidefinite Programming (Theory, Algorithms and Applications), Kluwer Academic Publishers.

  • Wright S.J. (1997).Primal-dual Interior-Point Methods. SIAM.

  • Wu S.P., Boyd S. and Vandenberghe L. (1998). FIR filter Design Via Spectral Factorization and Convex Optimization. In: Datta B. (ed.),Applied and Computational Control, Signals and Circuits 1. Birkhauser, 215–245.

  • Ye Y. and Anstreicher K.M. (1993). On Quadratic andO(√nL) Convergence of a Predictor-Corrector Algorithm for LCP.Mathematical Programming 62, 537–551.

    Article  Google Scholar 

  • Ye Y. (1997).Interior Point Algorithms, Theory and Analysis. Wiley.

  • Zhang Y. (1999). User’s Guide to LIPSOL: Linear-Programming Interior Point Solvers V0.4. Interior Point Methods.Optimization Methods and Software 11/12, 385–396.

    Google Scholar 

  • Zhao Q., Karisch S.E., Rendl F. and Wolkowicz H. (1998). Semidefinite Programming Relaxations for the Quadratic Assignment Problem.Journal of Combinatorial Optimization 2, 71–109.

    Article  Google Scholar 

  • Zhu X., Peng J., Terlaky T. and Zhang G. (2003). On Implementing Self-Regular Proximity Based Feasible IPMs. Technical Report 2003/2, Advanced Optimization Lab. Department of Computing and Software, McMaster University. http://www.cas.mcmaster.ca/~oplab/publication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the MITACS project “New IPMs and Software for Convex Conic-Linear Optimization and Their Application to Solve VLSI Circuit Layout Problems”, by an NSERC discovery grant, and the CRC program. The first author would also like to thank the Iranian Ministry of Science, Research and Technology for supporting his research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salahi, M., Sotirov, R. & Terlaky, T. On self-regular IPMs. Top 12, 209–275 (2004). https://doi.org/10.1007/BF02578956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02578956

Key Words

AMS subject classification

Navigation