Skip to main content
Log in

Computational modeling of amorphous silica. 1. Modeling the starting structures. A general conception

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This paper presents concepts underlying computational modeling of dispersive silicas. An object for modeling is polyatomic nanometer-sized clusters. A chemical software package adapted for the PC AT 386(486)/387 is utilized. A structure-sensitive method of vibration spectroscopy is suggested to verify the results. Ultradispersive materials are considered to be an adequate object to establish feedback between computational and real experiments. The program is realized on a set of dispersive silicas; an algorithm for construction of large clusters is proposed, which is based on the concept of radical difference of dispersive silicas. From analysis of vibration spectra we suggest that aerosils, silica gels, and aerogels should be regarded as amorphous tecto-, cyclo-, and polysilicas, respectively, in line with Liebau's classification of crystal silicates. The category of silica is determined by its production procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. S. Dewar,Mol. Struct.,56, 301–307 (1989).

    Google Scholar 

  2. V. A. Zaets,CLUSTER-Z1 Computational Chemistry Package [in Russian], Inst. Surf. Chem., Ukr. Acad. Sci. (1990).

  3. V. A. Zaets,CLUSTER-Z2 Computational Chemistry Package [in Russian], Inst. Surf. Chem., Ukr. Acad. Sci. (1990).

  4. E. F. Sheka,Physica B,174, 227–232 (1991).

    Article  CAS  Google Scholar 

  5. N. N. Besperstov, A. Yu. Muzychka, I. Natkanets, et al.,Zh. Éksp. Teor. Fiz.,96, 1752–1763 (1989).

    CAS  Google Scholar 

  6. E. Preuss, V. Wuttig, E. Sheka, et al., ibid.,100, 948–960 (1991).

    CAS  Google Scholar 

  7. E. Preuss, V. Wuttig, E. Sheka, et al.,J. Electron. Spectrosc. Relat. Phenom.,54/55, 425–443 (1990).

    Article  Google Scholar 

  8. E. Sheka, E. Nikitina, V. Khavryuchenko, et al.,Physica B,174, 187–191 (1991).

    Article  CAS  Google Scholar 

  9. E. F. Sheka, I. Natkaniec, V. D. Khavryuchenko, et al.,J. Electron. Spectrosc. Relat. Phenom.,54/55, 855–876 (1990).

    Article  Google Scholar 

  10. E. F. Sheka, I. Natkanets, V. D. Khavryuchenko, et al.,Zh. Fiz. Khim.,67, 38–48 (1993).

    CAS  Google Scholar 

  11. E. F. Sheka, V. D. Khavryuchenko, I. Natkanets, et al.,Zh. Struk. Khim.,33, No. 4, 66–75 (1992).

    CAS  Google Scholar 

  12. A. V. Kurdyumov, V. V. Panichkina, A. Yu. Muzychka, et al., in:2nd All-Union Conference “Physical Chemistry of Ultradispersive Systems” [in Russian] (1989), p. 9.

  13. S. Borisov, N. Balaganov, and V. Gubanov,Interaction of Gases with the Surface of Solids [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  14. I. Natkaniec, J. Fricke, V. Khavryuchenko, et al.,Physica B,180/181, 522–524 (1992).

    Article  Google Scholar 

  15. I. I. Gurevich and L. V. Tarasov,Physics of Low-Energy Neutrons [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  16. I. V. Markichev, I. Natkanets, and E. F. Sheka,Zh. Struk. Khim.,34, No. 1, 44–53 (1993).

    CAS  Google Scholar 

  17. I. V. Markichev, I. Natkanets, and E. F. Sheka, ibid., 54–63 (1993).

    CAS  Google Scholar 

  18. I. V. Markichev, I. Natkanets, and E. F. Sheka, ibid., 64–76 (1993).

    CAS  Google Scholar 

  19. I. V. Markichev, I. Natkanets, E. F. Sheka, et al., ibid.,35, No. 4, 29 (1993).

    Google Scholar 

  20. E. F. Sheka, I. V. Markichev, V. D. Khavryuchenko, and I. Natkanets, ibid.,35, No. 4, 39 (1993).

    Google Scholar 

  21. E. F. Sheka,Usp. Fiz. Nauk,160, 263–298 (1990).

    CAS  Google Scholar 

  22. F. Liebau,Structural Chemistry of Silicates, Springer-Verlag, Berlin (1985).

    Google Scholar 

  23. R. K. Iler,The Chemistry of Silica, Wiley, New York (1979).

    Google Scholar 

  24. I. E. Neymark and R. Yu. Sheinfine,Silica Gel: Production, Properties, and Applications [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  25. J. Fricke (ed.),Aerogels, Springer Proceedings in Physics, Vol. 6 (1986).

  26. I. D. Morokhov, L. I. Trusov, and S. P. Chizhik,Ultradispersive Metal Media [in Russian], Atomizdat, Moscow (1977).

    Google Scholar 

  27. S. S. Kistler,J. Phys. Chem.,36, 52–58 (1932).

    Article  CAS  Google Scholar 

  28. C. J. Brinker, K. D. Keefer, D. W. Schaeffer, et al.,J. Non-Cryst. Solids,48, 47–64 (1982).

    Article  CAS  Google Scholar 

Download references

Authors

Additional information

Institute of Surface Chemistry, Ukrainian Academy of Sciences. Russian University of Peoples' Friendship. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 2, pp. 74–84, March–April, 1994.

Translated by O. Kharlamova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khavryuchenko, V.D., Sheka, E.F. Computational modeling of amorphous silica. 1. Modeling the starting structures. A general conception. J Struct Chem 35, 215–223 (1994). https://doi.org/10.1007/BF02578311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02578311

Keywords

Navigation