Skip to main content
Log in

Dietary linoleic, α-linolenic and oleic acids are oxidized at similar rates in rats fed a diet containing these acids in equal proportions

  • Article
  • Published:
Lipids

Abstract

The objective of this study was to examine whether whole body oxidation rates of dietary linoleic, α-linolenic and oleic acids differ when the acids are provided in identical quantities. Male rats were fed for 10 wk a 15% fat (w/w) diet containing equal amounts of linoleic, α-linolenic and oleic acids (22.7, 23.0 and 23.2% of total fatty acids, respectively). At week 10, after overnight fasting, rats were intragastrically administered 20 μCi of either [1-14C]-labelled linoleic, α-linolenic or oleic acid in a 200-μL bolus of oil containing equal quantities of each fatty acid. The appearance of14CO2 in expired air was then monitored hourly for 12h for each animal. A preliminary study had shown that growth and food consumption patterns in animals consuming the oil containing equal quantities of each of the fatty acids paralleled the patterns of animals that were self-selecting among separate diets, each of which contained one of the component oils. The appearance of14C, expressed as percent dose administered, peaked at 2–3 h post-dose for14C-labelled linoleic (5.28±0.37%/h), α-linolenic (6.92±0.51%/h) and oleic (5.98±0.44%/h) acids. Statistically these values were not significantly different. Cumulative14CO2 excretion rates over 12 h were also similar for linoleic (27.2±0.9%), α-linolenic (26.8±1.2%) and oleic (25.9±1.2%) acids. The results suggest that the rat's capacity to oxidize 18-carbon unsaturated fatty acids is not affected by fatty acid unsaturation when these fatty acids are provided at equal dietary levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FAME:

fatty acid methyl esters

GLC:

gas-liquid chromatography

MUFA:

monounsaturated fatty acids

PUFA:

polyunsaturated fatty acids

SAFA:

saturated fatty acids

References

  1. Mercer, S.W., and Trayhurn, P. (1987)J. Nutr. 117 2147–2153.

    Article  CAS  PubMed  Google Scholar 

  2. Shimomura, Y., Tamura, T., and Suzuki, M. (1990)J. Nutr. 120, 1291–1296.

    Article  CAS  PubMed  Google Scholar 

  3. Herzberg, G.R. (1991)Can. J. Phys. Pharmacol. 69, 1637–1647.

    Article  CAS  Google Scholar 

  4. Parrish, C.C., Pathy, D.A., Parkes, J.G., and Angel, A. (1991)J. Cell Physiol. 148, 493–502.

    Article  CAS  PubMed  Google Scholar 

  5. Su, W., and Jones, P.J.H. (1993)J. Nutr. 123, 2109–2114.

    CAS  PubMed  Google Scholar 

  6. Leyton, J., Drury, P.J., and Crawford, M.A. (1987)Brit. J. Nutr. 57, 383–393.

    Article  CAS  PubMed  Google Scholar 

  7. Lynn, W.S., and Brown, R.H. (1959)Arch. Biochem. Biophys. 81, 353–362.

    Article  CAS  PubMed  Google Scholar 

  8. Coots, R.H. (1964)J. Lipid Res. 5, 468–472.

    CAS  PubMed  Google Scholar 

  9. Cenedella, J.R., and Allen, A. (1969)Lipids 4, 155–158.

    Article  CAS  PubMed  Google Scholar 

  10. Mead, J.F., Slaton, W.H., and Decker, A.B. (1956)J. Biol. Chem. 218, 401–407.

    CAS  PubMed  Google Scholar 

  11. Jones, P.J.H., Pencharz, P.B., and Clandinin, M.T. (1985)Am. J. Clin. Nutr. 42, 769–777.

    Article  CAS  PubMed  Google Scholar 

  12. Toorop, A.I., Romsos, D.R., and Leveille, G.A. (1979)Proc. Soc. Exp. Biol. Med. 160, 312–316.

    Article  CAS  PubMed  Google Scholar 

  13. Bannon, C.D., Graske, J.D., Har, N.T., Harper, N.L., and O'Rourke, K.L. (1982)J. Chromatogr. 247, 63–69.

    Article  CAS  Google Scholar 

  14. Bottino, N.R., Anderson, R.E., and Reiser, R. (1965)J. Am. Oil Chem. Soc. 42, 1124–1129.

    Article  CAS  PubMed  Google Scholar 

  15. Watkins, J.B., Klein, P.D., Schoeller, D.A., Kirschner, B.S., Park, R., and Perman, J.A. (1982)Gastroenterol. 82, 911–917.

    CAS  Google Scholar 

  16. Abt, A.F., and Schuching, S.L. (1966)J. Hopkins Med. J. 119, 316–330.

    CAS  Google Scholar 

  17. Forsgren, L. (1968)Arkiv. Kemi 30, 355–360.

    Google Scholar 

  18. Dupont, J. (1966)Lipids 1, 415–421.

    Article  CAS  PubMed  Google Scholar 

  19. Dupont, J., and Mathias, M.M. (1969)Lipids 4, 478–483.

    Article  CAS  PubMed  Google Scholar 

  20. Spitzer, J.J., and Gold, M. (1965)Ann. N.Y. Acad. Sci. 131, 235–249.

    Article  CAS  PubMed  Google Scholar 

  21. Nestel, P.J., and Barter, P. (1971)Clin. Sci. 40, 345–350.

    Article  CAS  PubMed  Google Scholar 

  22. Awad, A.B., Bernardis, L.L., and Fink, C.S. (1990)J. Nutr. 120, 1277–1282.

    Article  CAS  PubMed  Google Scholar 

  23. Vahouny, G.V., and Treadwell, C.R. (1959)Am. J. Physiol. 196, 881–883.

    CAS  PubMed  Google Scholar 

  24. Ockner, R.K., Pittman, J.P., and Yager, J.L. (1972)Gastroenterol. 62, 981–992.

    CAS  Google Scholar 

  25. Jones, P.J.H., Pencharz, P.B., and Clandinin, M.T. (1985)J. Lab. Clin. Med. 105, 647–652.

    CAS  PubMed  Google Scholar 

  26. McDonald, G.B., Saunders, D.R., Weidman, M., and Fisher, L. (1980)Am. J. Physiol. 239, G141-G150.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Jones, P.J.H. Dietary linoleic, α-linolenic and oleic acids are oxidized at similar rates in rats fed a diet containing these acids in equal proportions. Lipids 29, 491–495 (1994). https://doi.org/10.1007/BF02578246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02578246

Keywords

Navigation