Skip to main content
Log in

UV laser-induced decomposition of nickel(II) dimethylglyoximate and dehydrogenated 1,2-hydroxylaminooximate in thin films

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This work studies the mechanism of laser-induced decomposition of nickel(II) chelate complexes with dimethylglyoxime Ni(DMG)2 and with a dehydrogenated free-radical methyl derivative of 1,2-hydroxylaminooxime, Ni(HAO)2, as solid films and powders. Stable gaseous products of the laser-induced decomposition of these complexes are compared with those of thermal decomposition; the comparison shows that the products considerably differ. Experiments revealed a markedly threshold character of the dependence of the degree of conversion on XeCl excimer laser irradiance. These two facts, along with mass-spectrometry data for chelates subjected to ionization by positive and negative ions, suggest a two-photon photochemical mechanism of the decomposition. In the condensed state the photoionization of a chelate molecule is accompanied by transfer of an electron to the lattice with further localization of the electron on the antibonding orbital of the neighboring molecule, which results in fragmentation of the latter. The secondary decomposition processes depend on the electronic and stereochemical structure of the complexes. When irradiated by XeCl excimer laser in air, thin layers of the chelates on Si and SiO2 substrates undergo explosive decomposition. The gaseous products of this reaction are ejected into the atmosphere, and the surface of the substrate is covered by a thin dielectric film, whose refractive index is close to that of nickel hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ushida, K. Higashiyama, I. Hirabayashi, and S. Tanaka,Jpn. J. Appl. Phys.,30, No. 1A, L35-L38 (1991).

    Article  CAS  Google Scholar 

  2. B. G. Anex and E. K. Krist,J. Am. Chem. Soc.,89, No. 24, 6114–6125 (1967).

    Article  CAS  Google Scholar 

  3. S. V. Larionov, V. N. Kirichenko, A. I. Stetsenko, et al.,Zh. Neorg. Khim,28,28, 411–416 (1983).

    CAS  Google Scholar 

  4. E. O. Schlemper and R. K. Murmann,Inorg. Chem.,22, No. 7, 1077–1081 (1983).

    Article  CAS  Google Scholar 

  5. T. V. Troepolskaya, G. A. Vagina, V. I. Morozov, et al.,Izv. Akad. Nauk SSSR, Ser. Khim., No. 23, 553–558 (1987).

    Google Scholar 

  6. S. V. Larionov and L. A. Kosareva,Zh. Neorg. Khim.,31, No. 9, 2334–2338 (1986).

    CAS  Google Scholar 

  7. J. L. Garnett, I. K. Gregor, M. Guilhaus, and D. R. Dakternieks,Inorg. Chim. Acta,44, No. 3, L121-L124 (1980).

    Article  CAS  Google Scholar 

  8. B. Marciniak and G. E. Buono-Core,J. Photochem. Photobiol. A: Chem.,51, 1–25, (1990).

    Article  Google Scholar 

  9. N. Mikami, R. Ohki, and H. Kido,Chem. Phys.,141 431–440 (1990).

    Article  CAS  Google Scholar 

  10. F. A. Cotton and J. J. Wise,Inorg. Chem.,6, No. 5, 917–924 (1967).

    Article  CAS  Google Scholar 

  11. V. F. Plyusnin, E. P. Kuznetsova, I. V. Khmelinskii, et al.,J. Photochem. Photobiol. A: Chem.,63, 289–301 (1992).

    Article  CAS  Google Scholar 

  12. Gmelins Handbuch der Anorganischen Chemie. System-Nummer 57, Nickel, Teil C, Lfg. 2, Verlag Chemie, Weinheim (1969), pp. 844–853.

  13. C. V. Banks and D. W. Barnum,J. Am. Chem. Soc.,80, No. 18, 4767–4772 (1958).

    Article  CAS  Google Scholar 

  14. R. H. Pierson, A. N. Fletcher, and E. St. Clair Gantz,Anal. Chem.,28, No. 8, 1218–1239 (1956).

    Article  CAS  Google Scholar 

  15. N. Nakamoto,Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York (1963).

    Google Scholar 

  16. K. Nakanishi,Infrared Absorption Spectroscopy. Practical, Holden-Day, San Francisco (1962).

    Google Scholar 

  17. I. B. Bersuker,Jahn-Teller Effect and Vibronic Interactions in Modem Chemistry [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  18. K. M. Indrichan, N. V. Gerbeleu, and S. V. Larionov,Izv. Akad. Nauk SSSR, Ser. Khim., No. 1, 53–55 (1989).

    Google Scholar 

  19. F. A. Cotton and J. J. Wise,Inorg. Chem.,5, No. 7, 1200–1207 (1966).

    Article  CAS  Google Scholar 

  20. D. G. Batyr, F. A. Spatar', and S. S. Budnikov,Koordinats. Khim. 9, No. 11, 1452–1457 (1983).

    CAS  Google Scholar 

  21. S. M. Schildcrout and L. M. Besozzi,Inorg. Chem.,29, No. 5, 1054–1057 (1990).

    Article  CAS  Google Scholar 

  22. J. Charalambous, J. S. Morgan, L. Operti, et al.,Inorg. Chim. Acta,144, No. 2, 201–203 (1988).

    Article  CAS  Google Scholar 

  23. P. L. Beaumont, J. L. Garnett, and I. K. Gregor,ibid.,45, No. 3, L99-L101 (1980).

    Article  Google Scholar 

  24. H. F. Holtzelaw, R. I. Lintvedt, H. E. Baumgarten, et al.,J. Am. Chem. Soc.,91, No. 14, 3774–3778 (1969).

    Article  Google Scholar 

  25. J. B. Westmore and D. K. C. Fung,Inorg. Chem.,22, 902–907 (1983).

    Article  CAS  Google Scholar 

  26. J. L. Wood and M. M. Jones,J. Phys. Chem.,67, No. 5, 1049–1051 (1963).

    CAS  Google Scholar 

Download references

Authors

Additional information

This work was presented at SPIE's International OE/LASE'94.

Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturmoi Khimii, Vol. 35, No. 1, pp. 70–80, January–February, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badalyan, A.M., Polyakov, O.V., Prokhorova, S.A. et al. UV laser-induced decomposition of nickel(II) dimethylglyoximate and dehydrogenated 1,2-hydroxylaminooximate in thin films. J Struct Chem 36, 60–68 (1995). https://doi.org/10.1007/BF02577750

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02577750

Keywords

Navigation