Invertebrate Neuroscience

, Volume 3, Issue 4, pp 335–345 | Cite as

Characterization of calcium/calmodulin-dependent protein kinase II activity in the nervous system of the lobster,Panulirus interruptus

  • Michelle D. Withers
  • Mary B. Kennedy
  • Eve Marder
  • Leslie C. Griffith
Original Articles


Nervous system tissue fromPanulirus interruptus has an enzyme activity that behaves like calcium/calmodulin-dependent protein kinase II (CaM KII). This activity phosphorylates known targets of CaM KII, such as synapsin I and autocamtide 3. It is inhibited by a CaM KII-specific autoinhibitory domain peptide. In addition, this lobster brain activity displays calcium-independent activity after autophosphorylation, another characteristic of CaM KII. A cDNA from the lobster nervous system was amplified using polymerase chain reaction. The fragment was cloned and found to be structurally similar to CaM KII. Serum from rabbits immunized with a fusion protein containing part of this sequence immunoprecipitated a CaM KII enzyme activity and a family of phosphoproteins of the appropriate size for CaM KII subunits.

Lobster CaM KII activity is found in the brain and stomatogastric nervous system including the commissural ganglia, commissures, stomatogastric ganglion and stomatogastric nerve. Immunoblot analysis of these same regions also identifies bands at an apparent molecular weight characteristic of CaM KII.

Key Words

stomatogastric nervous system crustaceans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barria, A., Muller, D., Derkach, V., Griffith, L. C. and Soderling, T. R. (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM KII during long-term potentiation.Science,276, 2042–2045.PubMedCrossRefGoogle Scholar
  2. Bartelt, D. C., Fidel, S., Farber, L. H., Wolff, D. J. and Hammel, R. L. (1988) Calmodulin-dependent multifunctional protein kinase inAspergillus nidulans.Proc. Natl. Acad. Sci. USA,85, 3279–3283.PubMedCrossRefGoogle Scholar
  3. Bass, M., Pant, H. C., Gainer, H. and Soderling, T. R. (1987) Calcium/calmodulin-dependent protein kinase II in squid synaptosomes.J. Neurochem.,49, 1116–1123.PubMedCrossRefGoogle Scholar
  4. Calman, B. G., Andrews, A. W., Rissler, H. M., Edwards, S. C. and Battelle, B. A. (1996) Calcium/calmodulin-dependent protein kinase II and arrestin phosphorylation in Limulus eyes.J. Photochem. Photobiol. B,35, 33–44.PubMedCrossRefGoogle Scholar
  5. Cho, K. O., Wall, J. B., Pugh, P. C., Ito, M., Mueller, S. A. and Kennedy, M. B. (1991) The α subunit of type II Ca2+/calmodulin-dependent protein kinase is highly conserved inDrosophila.Neuron,7, 439–450.PubMedCrossRefGoogle Scholar
  6. Cleveland, D. W., Fischer, S. G., Kirschner, M. W. and Laemmli, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis.J. Biol. Chem.,252, 1102–1106.PubMedGoogle Scholar
  7. Czernik, A. J., Pang, D. T. and Greengard, P. (1987) Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I.Proc. Natl. Acad. Sci. USA,84, 7518–7522.PubMedCrossRefGoogle Scholar
  8. Erondu, N. E. and Kennedy, M. B. (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain.J. Neurosci.,5, 3270–3277.PubMedGoogle Scholar
  9. Goldenring, J., Gonzalez, B., McGuire, J. S. J. and DeLorenzo, R. J. (1983) Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins.J. Biol. Chem.,258, 12632–12640.PubMedGoogle Scholar
  10. Griffith, L. C. and Greenspan, R. J. (1993) The diversity of calcium/calmodulin-dependent protein kinase II isoforms inDrosophila is generated by alternative splicing of a single gene.J. Neurochem.,61, 1534–1537.PubMedCrossRefGoogle Scholar
  11. Griffith, L. C. and Schulman, H. (1988) The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase.J. Biol. Chem.,263, 9542–9549.PubMedGoogle Scholar
  12. Griffith, L. C., Verselis, L. M., Aitken, K. M., Kyriacou, C. P. and Greenspan, R. J. (1993) Inhibition of calcium/calmodulin-dependent protein kinase inDrosophila disrupts behavioral plasticity.Neuron,10, 501–509.PubMedCrossRefGoogle Scholar
  13. Griffith, L. C., Wang, J., Zhong, Y., Wu, C. F. and Greenspan, R. J. (1994) Calcium/calmodulin-dependent protein kinase II and potassium channel subunit Eag similarly affect plasticity inDrosophila.Proc. Natl. Acad. Sci. USA,91, 10044–10048.PubMedCrossRefGoogle Scholar
  14. GuptaRoy, B. and Griffith, L. C. (1996) Functional heterogeneity of alternatively spliced isoforms ofDrosophila Ca2+/calmodulin-dependent protein kinase II.J. Neurochem.,66, 1282–1288.PubMedCrossRefGoogle Scholar
  15. GuptaRoy, B., Marwaha, N., Pla, M., Wang, Z. and Griffith, L. C. (1998) Alternative splicing ofDrosophila calcium/calmodulin-dependent protein kinase II regulates substrate specificity.submitted.Google Scholar
  16. Hanson, P. I., Kapiloff, M. S., Lou, L. L., Rosenfield, M. G. and Schulman, H. (1989) Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation.Neuron,3, 59–70.PubMedCrossRefGoogle Scholar
  17. Hanson, P. I. and Schulman, H. (1992) Neuronal Ca2+/calmodulin-dependent protein kinases.Annu. Rev. Biochem.,61, 559–601.PubMedCrossRefGoogle Scholar
  18. Kennedy, M. B., McGuinness, T. and Greengard, P. (1983) A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin I: Partial purification and characterization.J. Neurosci.,3, 818–831.PubMedGoogle Scholar
  19. Koch, T., Kroslak, T., Mayer, P., Raulf, E. and Hollt, V. (1997) Site mutation in the rat mu-opioid receptor demonstrates the involvement of calcium/calmodulin-dependent protein kinase II in agonist-mediated desensitization.J. Neurochem.,69, 1767–1770.PubMedCrossRefGoogle Scholar
  20. LeMasson, G., Marder, E. and Abbott, L.F. (1993) Activity-dependent regulation of conductances in model neurons.Science,259, 1915–1917.PubMedCrossRefGoogle Scholar
  21. Lin, C. R., Kapiloff, M. S., Durgerian, S., Tatemoto, K., Russo, A. F., Hanson, P., Schulman, H. and Rosenfeld, M. G. (1987) Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase.Proc. Natl. Acad. Sci. USA,84, 5962–5966.PubMedCrossRefGoogle Scholar
  22. Liu, Z., Golowasch, J., Marder, E. and Abbott, L. F. (1997) A model neuron with activity-dependent conductances regulated by multiple calcium sensors.J. Neurosci.,18, 2309–2320.Google Scholar
  23. Malinow, R., Schulman, H. and Tsien, R. W. (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP.Science,245, 862–866.PubMedCrossRefGoogle Scholar
  24. Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. and Golowasch, J. (1996) Memory from the dynamics of intrinsic membrane currents.Proc. Natl. Acad. Sci. USA,93, 13481–13486.PubMedCrossRefGoogle Scholar
  25. Marder, E. and Calabrese, R. L. (1996) Principles of rhythmic motor pattern generation.Physiol. Rev.,76, 687–717.PubMedGoogle Scholar
  26. Miller, S. G. and Kennedy, M. B. (1985) Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction.J. Biol. Chem.,260, 9039–9046.PubMedGoogle Scholar
  27. Miller, S. G. and Kennedy, M. B. (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch.Cell,44, 861–870.PubMedCrossRefGoogle Scholar
  28. Miller, S. G., Patton, B. L. and Kennedy, M. B. (1988) Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity.Neuron,1, 593–604.PubMedCrossRefGoogle Scholar
  29. Ohsako, S., Nishida, Y., Ryo, H. and Yamauchi, T. (1993) Molecular characterization and expression of theDrosophila Ca2+/calmodulin-dependent protein kinase II gene.J. Biol. Chem.,268, 2052–2062.PubMedGoogle Scholar
  30. Omkumar, R. V., Kiely, M. J., Rosenstein, A. J., Min, K. T. and Kennedy, M. B. (1996) Identification of a phosphorylation site for calcium/calmodulin dependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor.J. Biol. Chem.,271, 31670–31678.PubMedCrossRefGoogle Scholar
  31. Ouyang, Y., Kantor, D., Harris, K. M., Schuman, E. M. and Kennedy, M. B. (1997) Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hipocampus.J. Neurosci.,17, 5416–5427.PubMedGoogle Scholar
  32. Pausch, M. H., Kaim, D., Kunisawa, R., Admon, A. and Thorner, J. (1991) Multiple Ca2+/calmodulin-dependent protein kinase genes in a unicellular eukaryote.EMBO J,10, 1511–1522.PubMedGoogle Scholar
  33. Saitoh, T. and Schwartz, J. H. (1985) Phosphorylation-dependent translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme inAplysia neurons.J. Cell Biol.,100, 835–842.PubMedCrossRefGoogle Scholar
  34. Schulman, H. (1984) Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase.J. Cell Biol.,99, 11–19.PubMedCrossRefGoogle Scholar
  35. Schworer, C. M., Colbran, R. J., Keefer, J. R. and Soderling, T. R. (1988) Ca2+/calmodulin-dependent protein kinase II: Identification of a regulatory autophosphorylation site adjacent to the inhibitory and calmodulin-binding domains.J. Biol. Chem.,263, 13486–13489.PubMedGoogle Scholar
  36. Silva, A. J., Paylor, R., Wehner, J. and Tonegawa, S. (1992a) Impaired spatial learning in α-calcium-calmodulin-dependent protein kinase II mutant mice.Science,257, 206–211.PubMedCrossRefGoogle Scholar
  37. Silva, A. J., Stevens, C. F., Tonegawa, S. and Wang, Y. D. (1992b) Deficient long-term potentiation in a-calmodulin-dependent kinase II mutant mice.Science,257, 201–206.PubMedCrossRefGoogle Scholar
  38. Srinivasan, M., Edman, C. F. and Schulman, H. (1994) Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase into the nucleus.J. Cell Biol.,126, 839–852.PubMedCrossRefGoogle Scholar
  39. Thiel, G., Czernik, A. J., Gorelick, F., Nairn, A. C. and Greengard, P. (1988) Ca2+/calmodulin-dependent protein kinase II: Identification of threonine-286 as the autophosphorylation site in the α subunit associated with the generation of Ca2+-independent activity.Proc. Natl. Acad. Sci. USA,85, 6337–6341.PubMedCrossRefGoogle Scholar
  40. Turrigiano, G., Abbott, L. F. and Marder, E. (1994) Activity-dependent changes in the intrinsic properties of cultured neurons.Science,264, 974–977.PubMedCrossRefGoogle Scholar
  41. Turrigiano, G. G., LeMasson, G., and Marder, E. (1995) Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons.J. Neurosci.,15, 3640–3652.PubMedGoogle Scholar
  42. Wang, J., Renger, J., Griffith, L. C., Greenspan, R. J. and Wu, C. F. (1994) Concomitant alterations of physiological and developmental plasticity at CaM kinase II-inhibited synapses inDrosophila.Neuron,13, 1373–1384.PubMedCrossRefGoogle Scholar
  43. Wang, Z., Palmer, G., and Griffith, L. C. (1997) Regulation ofDrosophila Ca2+/calmodulin-dependent protein kinase II by autophosphorylation analyzed by site-directed mutatgenesis.J. Neurochem.,71, 378–87.CrossRefGoogle Scholar
  44. Yakel, J. L., Vissavajjhala, P., Derkach, V. A., Brickey, D. A. and Soderling, T. R. (1995) Identification of a Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors.Proc. Natl. Acad. Sci. USA,92, 1376–1380.PubMedCrossRefGoogle Scholar
  45. Yamauchi, T. and Fujisawa, H. (1983) Purification and characterization of the brain calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tryptophan 5-monooxygenase.Eur. J. Biochem.,132, 15–21.PubMedCrossRefGoogle Scholar

Copyright information

© Sheffield Academic Press 1998

Authors and Affiliations

  • Michelle D. Withers
    • 1
  • Mary B. Kennedy
    • 2
  • Eve Marder
    • 1
  • Leslie C. Griffith
    • 1
  1. 1.Volen Center and Biology DepartmentBrandeis UniversityWalthamUSA
  2. 2.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations