Skip to main content
Log in

Renal cell cultures for the study of growth factor interactions underlying kidney organogenesis

  • Cytokines/Growth Factors/Adhesion Factors
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The present study was performed in four renal cell lines to evaluate their capability to: (1) produce and express transforming growth factor α (TGFα), its respective receptor, the epidermal growth factor receptor (EGFr) and the small G protein, RhoA, and (2) exhibit morphogenetic properties when grown on Matri-cell substrates. The cell lines were derived from normal (Madin-Darby canine kidney cells), embryonic (SK-NEP-1 and 293 cells), and cancerous (human renal adenocarcinoma cells) kidneys. TGFα messenger ribonucleic acid evaluated by a nonradioactive in situ hybridization technique, was found to be expressed in all the cell lines. Large amounts of TGFα peptide were observed in all four cell lines, while EGFr was highly expressed only in cancerous ACHN and embryonic-tumor SK-NEP-1 cells. RhoA peptide was found in appreciable amounts in SK-NEP-1 and 293 cells (compared to the other two cell lines). The morphogenetic properties of the four cell lines were assessed, by culturing them on Matri-cell dishes: SK-NEP-1 cells alone were found to grow in three-dimensional structures forming clusters and worm-like cellular aggregates. This feature was displayed by SK-NEP-1 cells but not by the other three cell lines, and may be connected with the contemporary presence of RhoA, EGFr, and TGFα found in significant amounts only in the SK-NEP-1 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson P.; Paterson, H. F.; Hall A. Intracellular localization of the P21rho proteins. J. Cell Biol. 119:617–627; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Avner, E. D.; Sweeney W. E. Polypeptide growth factors in metanephric growth and segmental nephron differentiation. Paediatr. Nephrol. 4:372–377; 1990.

    Article  CAS  Google Scholar 

  • Barros, E. J. G.; Santos, O. F. P.; Matsumoto, K., et al. Differential tubulogenic and branching morphogenetic activies of growth factors: implications for epithelial tissue development. Proc. Natl. Acad. Sci. USA 92:4412–4416; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Bernardini, N.; Bianchi, F.; Lupetti, M., et al. Immunohistochemical localization of the epidermal growth factor, transforming growth factor α, and their receptor in the human mesonephros and metanephros. Dev. Dyn. 206:231–238; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bernardini, N.; Mattii, L.; Bianchi, F., et al. TGFα mRNA expression in renal organogenesis: a study in rat and human embryos. Exp. Nephrol. 9:90–98; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Brandli, A.; Adamson, E. D.; Simons, K. Transcytosis of epidermal growth factor. J. Biol. Chem. 266:8560–8566; 1991.

    PubMed  CAS  Google Scholar 

  • Brown, P. I.; Lam, R.; Laskmanan, J., et al. Transforming growth factor-α in developing rats. Am. J. Physiol. 259 (Endocrinol. Metab. 22):E256-E260; 1990.

    PubMed  CAS  Google Scholar 

  • Ciardiello, F.; Caputo, R.; Bianco, R., et al. Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide. J. Natl. Cancer Inst. 90:1087–1094; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J. R.; Van Buskirk, R. G. Matrix and laminin synthesis in MDCK cells in vitro. In Vitro Cell. Dev. Biol. 30A:733–735; 1994.

    Article  CAS  Google Scholar 

  • Dempsey, P. J.; Coffey, R. J. Basolateral targeting and efficient consumption of transforming growth factor-α when expressed in Madin-Darby canine kidney cells. J. Biol. Chem. 269:16,878–16,889; 1994.

    CAS  Google Scholar 

  • Fogh, J. Cultivation, characterization, and identification of human tumour cells with emphasis on kidney, testis, and bladder tumours. Natl. Cancer Inst. Monogr. 49:5–9; 1978.

    PubMed  Google Scholar 

  • Golha, A.; Harhammer, R.; Schultz, G. The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to rho. J. Biol. Chem. 273:4653–4659; 1998.

    Article  Google Scholar 

  • Goodyer, P. R.; Fata, J.; Mulligan, L., et al. Expression of transforming growth factor-α and epidermal growth factor receptor in human fetal kidneys. Mol. Cell. Endocrinol. 77:199–206; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Graham, F. L.; Smiley, J.; Russel, W. C., et al. Characteristics of a human cell line transformed by DNA from human adenovirus 5. J. Gen. Virol. 36:59–72; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Guterson, B.; Coweley, G.; Mcilhinney, J., et al. Evidence for increased EGF receptors in human sarcomas. Int. J. Cancer 36:689–693; 1985.

    Article  Google Scholar 

  • Hammerman, M. R. Growth factor in renal development. Semin. Nephrol. 15:291–299; 1995.

    PubMed  CAS  Google Scholar 

  • Hill, S. M. Receptor crosstalk: communication through cell signaling pathways. Anat. Rec. (New Anat.) 253:42–48; 1998.

    Article  CAS  Google Scholar 

  • Hotchin, N.; Hall, A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J. Cell. Biol. 131, 6(2):1857–1865; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kanwar, Y. S.; Carone, F. A.; Kumar, A., et al. Role of extracellular matrix, growth factors and proto-oncogenes in metanephric development. Kidney Int. 52:589–606; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lafrenie, R. M.; Yamada, K. M. Integrin-dependent signal transduction. J. Cell. Biochem. 61:543–553; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. C.; Rochford, R.; Todaro, G. J., et al. Developmental expression of rat transforming growth factor-α mRNA. Mol. Cell. Biol. 5:3644–3646; 1985.

    PubMed  CAS  Google Scholar 

  • Maratos-Flier, E.; Kao, C. Y.; Verdin, E. M., et al. Receptor-mediated vectorial transcytosis of epidermal growth factor by Madin-Darby canine kidney cells. J. Cell Biol. 105:1595–1601; 1987.

    Article  PubMed  CAS  Google Scholar 

  • McManus, M. J.; Boerner, J. L.; Danielsen, A. J., et al. An oncogenic epidermal growth factor receptor signals via a p21-activated kinase-caldesmon-myosin phosphotyrosine complex. J. Biol. Chem., 275:35328–35334; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mercola, M.; Stiles, C. D. Growth factor superfamilies and mammalian embryogenesis. Development 102:451–460; 1988.

    PubMed  CAS  Google Scholar 

  • Mirrione, A.; Mauchamp, J.; Rimet, O., et al. Follicle-like structures formed by intestinal cell lines derived from the HT29-D4 adenocarcinoma cell line: morphological and functional characterization. Biol. Cell 91:143–155; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Matsumoto, K.; Nakamura, T., et al. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67:901–908; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Soriano, J. V.; Malinda, K. M., et al. Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis. Cell Growth Differ. 9:355–365; 1998.

    PubMed  CAS  Google Scholar 

  • Nakamoto, T.; Usui, A.; Oshima, K., et al. Analysis of growth factors in renal cell carcinoma. Biochem. Biophys. Res. Commun. 153:818–824; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld, T. K.; Douglass, D.; Grant, M., et al. In vitro formation and expansion of cysts derived from human renal cortex epithelial cells. Kidney Int. 41:1222–1236; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Nobes, C. D.; Hall, A. Rho, rac and cdc42 regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81:53–62; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa, S.; Ueda, M.; Ando, N., et al. High incidence of EGF receptors hyperproduction in oesophageal squamous cell carcinoma. Int. J. Cancer 39:333–337; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Partanen, A. M.; Thesleff, I. Localization and quantitation of125I-epidermal growth factor binding in mouse embryonic tooth and other embryonic tissues at different development stages. Dev. Biol. 120:186–197; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Pavlova, A.; Stuart, R. O.; Pohl, M., et al. Evolution of gene expression patterns in a model of branching morphogenesis. Am. J. Physiol. 277:F650-F663; 1999.

    PubMed  CAS  Google Scholar 

  • Qiao, J.; Sakurai, H.; Nigam, S. K. Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney. Proc. Natl. Acad. Sci. USA 96:7330–7335; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rakowicz-Szulczynska, E. M.; Otwiaska, D.; Rodeck, U., et al. Epidermal growth factor (EGF) and monoclonal antibody to cell surface EGF receptor bind to the same chromatin receptor. Arch. Biochem. Biophys. 268:456–464; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S. A.; Ryan, G.; Hammerman, M. R. Metanephric transforming growth factor-α is required for renal organogenesisin vitro. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31):F533-F539; 1992.

    PubMed  CAS  Google Scholar 

  • Sakurai, H.; Barros, E. J.; Tsukamoto, T., et al. Anin vitro tubulogenesis system using cell lines derived from the embryonic kidney shows dependence on multiple soluble factors. Proc. Natl. Acad. Sci. USA 94:6279–6284; 1997a.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, H.; Tsukamoto, T.; Kjelsberg, C. A., et al. EGF receptor ligands are a large fraction of in vitro branching morphogens secreted by embryonic kidney. Am. J. Physiol. 273:F463-F472; 1997b.

    PubMed  CAS  Google Scholar 

  • Salomon, D. S.; Brandt, R.; Ciardiello, F., et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19:183–232; 1995.

    PubMed  CAS  Google Scholar 

  • Schlessinger, J. The epidermal growth factor receptor as a multifunctional allosteric protein. Biochemistry 27:3119–3123; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Taide, M.; Kanda, S.; Igawa, T., et al. Human simple renal cyst fluid contains a cyst formation-promoting activity for Madin-Darby canine kidney cells cultured in collagen gel. Eur. J. Clin. Invest. 26:506–513; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Takaishi, K.; Sasaki, T.; Kameyama, T., et al. Traslocation of activatedRho from the cytoplasm to membrane ruffling area, cell-cell adhesion sites and cleavage furrows. Oncogene 11:39–48; 1995.

    PubMed  CAS  Google Scholar 

  • Takaishi, K.; Sasaki, T.; Kotani, H., et al. Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. Cell Biol. 139:1047–1059; 1997.

    Article  CAS  Google Scholar 

  • Taub, M.; Wang, Y.; Szczesny, M., et al. Epidermal growth factor or transforming growth factor α is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc. Natl. Acad. Sci. USA 87:4002–4006; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Togawa, A.; Miyoshi, J.; Ishizki, H., et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIα. Oncogene 18:5373–5380; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Van Aelst, L.; D'Souza-Schorey, C. Rho GTPase and signaling networks. Genes Dev. 11:2295–2322; 1997.

    PubMed  Google Scholar 

  • Walker, J.; Everitt, J. J.; Freed, A. G., et al. Altered expression of transformating growth factor-α in hereditary rat renal cell carcinoma. Cancer Res. 51:2973–2978; 1991.

    PubMed  CAS  Google Scholar 

  • Wang, Z.; Tung, P. S.; Moran, M. F. Association of p120 ras gap with endocytic components and colocalization with epidermal growth factor (EGF) receptor in response to EGF stimulation. Cell Growth Differ. 7:123–133; 1996.

    PubMed  CAS  Google Scholar 

  • Wilcox, J. N.; Derynck, R. Developmental expression of rat transforming growth factors alpha and beta in mouse fetus. Mol. Cell. Biol. 8:3415–3422; 1988.

    PubMed  CAS  Google Scholar 

  • Winters, T. A.; Febres, F. G.; Fulgham, D. L., et al. Ontogeny of the epidermal growth factor receptor during development of the fetal bovine mesonephros and associated organs of the urogenital tract. Biol. Reprod. 48:1395–1403; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nunzia Bernardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattii, L., Bianchi, F., Da Prato, I. et al. Renal cell cultures for the study of growth factor interactions underlying kidney organogenesis. In Vitro Cell.Dev.Biol.-Animal 37, 251–258 (2001). https://doi.org/10.1007/BF02577538

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02577538

Key words

Navigation