Skip to main content
Log in

Characteristics of human dendritic cells generated in a microgravity analog culture system

  • Special-Nasa/Johnson Space Center Workshop
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Generation of an effective immune response requires that antigens be processed and presented to T lymphocytes by antigen-presenting cells, the most efficient of which are dendritic cells (DC). Because of their influence on both the innate and the acquired arms of immunity, a defect in DC would be expected, to result in a broad impairment of immune function, not unlike that observed in astronauts during or after space flight. In the study reported here, we investigated whether DC generation and function are altered in a culture environment that models microgravity, i.e., the rotary-cell culture system (RCCS). We observed that RCCS supported the generation of DC identified by morphology, phenotype (HLA-DR+ and lacking lineage-associated markers), and function (high allostimulatory activity). However, the yield of DC from RCCS was significantly lower than that from static cultures. RCCS-generated DC were less able to phagocytoseAspergillus fumigatus conidia and expressed a lower density of surface HLA-DR. The proportion of Dc expressing CD80 was also significantly reduced in RCCS compared to static cultures. When exposed to fungal antigens, RCCS-generated DC produced lower levels of interleukin-12 and failed to upregulate some costimulatory/adhesion molecules involved in antigen presentation. These data suggest that DC generation, and some functions needed to mount an effective immune response to pathogens, may be disturbed in the microgravity environment of space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banchereau, J.; Steinman, R. M. Dendritic cells and the control of immunity. Nature 392:245–252; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cenci, E.; Mencacci, A.; Fè d'Ostiani, C., et al. Cytokine- and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J. Infect. Dis. 178:1750–1760; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, D.; Pellis, N. R. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J. Leukoc. Biol. 63:550–562; 1998.

    PubMed  CAS  Google Scholar 

  • Davis, T. A.; Wiesmann, W.; Kidwell, W., et al. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J. Leukoc. Biol. 60:69–76; 1996.

    PubMed  CAS  Google Scholar 

  • Demotz, S.; Grey, H. M.; Sette, A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249:1028–1030; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Denning, D. W. Invasive aspergillosis. Clin. Infect. Dis. 26:781–803; 1998.

    PubMed  CAS  Google Scholar 

  • de Wynter, E. A.; Coutinho, L. H.; Pei, X., et al. Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems. Stem Cells 13:524–532; 1995.

    Article  PubMed  Google Scholar 

  • Fernandez, N. C.; Lozier, A.; Flament, C., et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responsesin vivo. Nat. Med. 5:405–411; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Grazziutti, M. L.; Rex, J. H.; Cowart, R. E., et al.Aspergillus fumigatus conidia induce a Thl-type cytokine response. J. Infect. Dis. 176:1579–1583; 1997.

    PubMed  CAS  Google Scholar 

  • Grouard, G.; Rissoan, M. C.; Filgueira, L., et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185:1101–1111; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hart, D. N. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90:3245–3287; 1997.

    PubMed  CAS  Google Scholar 

  • Hershman, M. J.; Cheadle, W. G.; Wellhausen, S. R., et al. Monocyte HLADR antigen expression characterizes clinical outcome in the trauma patient. Br. J. Surg. 77:204–207; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Holt, P. G.; Schon-Hegrad, M. A.; McMenamin, P. G. Dendritic cells in the respiratory tract. Int. Rev. Immunol. 6:139–149; 1990.

    PubMed  CAS  Google Scholar 

  • Ichiki, A. T.; Gibson, L. A.; Jago, T. L., et al. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells. J. Leukoc. Biol. 60:37–43; 1996.

    PubMed  CAS  Google Scholar 

  • Inaba, K.; Inaba, M.; Naito, M., et al. Dendritic cell progenitors phagocytose particulates, includingBacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J. Exp. Med. 178:479–488; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kono, K.; Sekikawa, T.; Matsumoto, Y. Influence of surgical stress on monocytes and complications of infection in patients with esophageal cancer-monocyte HLA-DR antigen expression and respiratory burst capacity. J. Surg. Res. 58:275–280; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova, I. V.; Rykova, M. P.; Lesnyak, A. T., et al. Immune changes during long-duration missions. J. Leukoc. Biol. 54:189–201; 1993.

    PubMed  CAS  Google Scholar 

  • Macatonia, S. E.; Hosken, N. A.; Litton, M., et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154:5071–5079; 1995.

    PubMed  CAS  Google Scholar 

  • Meehan, R. T.; Neale, L. S.; Kraus, E. T., et al. Alteration in human mononuclear leukocytes following space flight. Immunology 76:491–497; 1992.

    PubMed  CAS  Google Scholar 

  • Nair, S. K.; Hull, S.; Coleman, D., et al. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responsesin vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int. J. Cancer 82:121–124; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Pellis, N. R.; Goodwin, T. J.; Risin, D., et al. Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell. Dev. Biol. 33A:398–405; 1997.

    Article  Google Scholar 

  • Przepiorka, D.; van Vlasselaer, P.; Huynh, L., et al. Rapid debulking and CD34 enrichment of filgrastim-mobilized peripheral blood stem cells by semiautomated density gradient centrifugation in a closed system. J. Hematother. 5:497–502; 1996.

    PubMed  CAS  Google Scholar 

  • Rissoan, M. C.; Soumelis, V.; Kadowaki, N., et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283:1183–1186; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Romani, N.; Gruner, S.; Brang, D., et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180:83–93; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sallusto, F.; Cella, M.; Danieli, C., et al. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182:389–400; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sallusto, F.; Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179:1109–1118; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M.; Iwakabe, K.; Kimura, S., et al. Functional skewing of bone marrow-derived dendritic cells by Th1- or Th2-inducing cytokines. Immunol. Lett. 67:63–68; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Savary, C. A.; Grazziutti, M. L.; Melichar, B., et al. Multidimensional flowcytometric analysis of dendritic cells in peripheral blood of normal donors and cancer patients. Cancer Immunol. Immunother. 45:234–240; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14:51–58; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Siena, S.; Di Nicola, M.; Bregni, M., et al. Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp. Hematol. 23:1463–1471; 1995.

    PubMed  CAS  Google Scholar 

  • Sonnenfeld, G.; Davis, S.; Taylor, G. R., et al. Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys. J. Interferon Cytokine Res. 16:409–415; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9:271–296; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, M. C.; Teague, T. K.; McIntyre, B. W. Regulation of lymphocyte pseudopodia formation by triggering the integrin α11. J. Immunol. 154:2112–2124; 1995.

    PubMed  CAS  Google Scholar 

  • Taylor, G. R.; Janney, R. P. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J. Leukoc. Biol. 51:129–132; 1992.

    PubMed  CAS  Google Scholar 

  • Taylor, G. R.; Konstantinova, I.; Sonnenfeld, G., et al. Changes in the immune system during and after spaceflight. Adv. Space Biol. Med. 6:1–32; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wu, A. H. B.; Taylor, G. R.; Graham, G. A., et al. The clinical chemistry and immunology of long-duration space missions. Clin. Chem. 39:22–36; 1993.

    PubMed  CAS  Google Scholar 

  • Zhou, L. J.; Tedder, T. F. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl. Acad. Sci. USA 93:2588–2592; 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherylyn A. Savary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savary, C.A., Grazziutti, M.L., Przepiorka, D. et al. Characteristics of human dendritic cells generated in a microgravity analog culture system. In Vitro Cell.Dev.Biol.-Animal 37, 216–222 (2001). https://doi.org/10.1007/BF02577532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02577532

Key words

Navigation