Comparative in vitro cytotoxicity of ethyl acrylate and tripropylene glycol diacrylate to normal human skin and lung cells

Summary

The potential for occupational exposure to the esters of acrylic acid (acrylates) is considerable, and, thus, requires a greater understanding of the their toxicity. Confluent (70–90%) cultures of normal human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF), or bronchial epithelium (NHBE) were exposed to the monofunctional ethyl acrylate (EA), the multifunctional tripropylene glycol diacrylate (TPGDA), or TPGDA monomer in a radiation curable lacquer (Lacquer A) at equimolar dosages in order to determine human in vitro cytotoxicity. Viability of the cells after 2–24-h exposure to the representative monofunctional or multifunctional acrylate or solvent control was used to calculate an index of acute cytotoxicity (50% inhibitory dose; ID50) and to determine the shape of the dose-response curves. TPGDA, Lacquer A, and EA were equally cytotoxic (ID50≈0.1 μmol/cm2) to NHEK at equimolar doses. TPGDA or Lacquer A were more cytotoxic (≈100×) to NHDF or NHBE than EA. Sequential exposure of UVA and TPGDA to NHEK indicate the potential for a synergistic cytotoxic response. These findings are consistent with observed decreases in free sulfhydryl groups (e.g., glutathione or cysteine) that parallel the dose-response-related decreases in viability. Together, these data suggest possible differences in toxicity between the monofunctional EA and multifunctional TPGDA to NHEK, NHDF, or NHBE, possibly due to the difference in the number of functional acrylate groups and/or physicochemical differences (e.g., vapor pressure) between the acrylates investigated.

This is a preview of subscription content, access via your institution.

References

  1. Andrews, L. S.; Clary, J. J. Review of the toxicity of multifunctional acrylates. J. Toxicol. Environ. Health 19:149–164; 1986.

    PubMed  CAS  Google Scholar 

  2. Anonymous. CRC handbook of chemistry and physics. Boca Raton, FL: CRC Press; published annually.

  3. Anonymous. Material data safety sheet; ethyl acrylate. Aldrich Chemical Co., Inc., Milwaukee, WI; 1993.

  4. Anonymous. Material safety data sheet; 1,6-hexanediol diacrylate. Aldrich Chemical Co., Inc., Milwaukee, WI; 1993.

  5. Anonymous. Material safety data sheet; poly (propylene glycol) diacrylate. Aldrich Chemical Co., Inc., Milwaukee, WI; 1993

  6. Ashby, J.; Hilton, J.; Dearman, R. J., et al. Mechanistic relationship among mutagenicity, skin sensitization, and skin carcinogenicity. Environ. Health Perspect. 101:62–74; 1993.

    PubMed  Article  CAS  Google Scholar 

  7. Ashby, J.; Tennant, R. W. Chemical structure,Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat. Res. 204:17–115; 1988.

    PubMed  Article  CAS  Google Scholar 

  8. deBethizy, J. D.; Udinsky, J. R.; Scribner, H. E.; Frederick, C. B., The disposition and metabolism of acrylic acid and ethyl acrylate in male Sprague-Dawley rats. Fundam. Appl. Toxicol. 8:549–561; 1987.

    PubMed  Article  CAS  Google Scholar 

  9. Björkner, B.; Dahlquist, I.; Fregert, S., Allergic contact dermatitis from acrylates in ultraviolet curing inks. Contact Dermatitis 6:405–409; 1980.

    PubMed  Article  Google Scholar 

  10. Black, H. S. Potential involvement of free radical reactions in ultraviolet light mediated cutaneous damage. Photochem. Photobiol. 46:213–221; 1987.

    PubMed  CAS  Google Scholar 

  11. Boyland, E.; Chasseaud, L. F. Enzymes catalysing conjugations of glutathione with αβ-unsaturated carbonyl compounds. Biochem. J. 109:651–661; 1968.

    PubMed  CAS  Google Scholar 

  12. Corkill, J. A.; Lloyd, E. J.; Hoyle,P., et al. Toxicology of methyl methacrylate: the rate of disappearance of methyl methacrylate in human blood in vitro. Clin. Chim. Acta 68:141–146; 1976.

    PubMed  Article  CAS  Google Scholar 

  13. Dearfield, K. L.; Millis, C. S.; Harrington-Brock, K., et al. Analysis of the genotoxicity of nine acrylate/methacrylate compounds in L5178Y mouse lymphoma cells. Mutagenesis 4:381–393; 1989.

    PubMed  Article  CAS  Google Scholar 

  14. Delbressine, L. P. C.; Seutter-Beriage, F.; Seutter, E. Metabolism toxicity of acrylates and methacrylates. Br. J. Pharmacol 68:165–166; 1980.

    Google Scholar 

  15. DePass, L. R.; Fowler, E. H.; Meckley, D. R.; Weil, C. S. Dermal oncogenicity bioassay of acrylic acid, ethyl acrylate, and butyl acrylate. J. Toxicol. Environ. Health 14:115–120; 1984.

    PubMed  CAS  Google Scholar 

  16. DePass, L. R.; Maronpot, R. R.; Weil, C. S. Dermal oncogenicity bioassays of monofunctional and multifunctional acrylates and acrylate-based oligomers. J. Toxicol. Environ. Health 16:55–60; 1985

    PubMed  CAS  Google Scholar 

  17. Enninga, I. C.; Groenendijk, R. T. L.; Filon, A. R., et al. The wavelength dependence of u.v-induced pyrimidine dimer formation, cell killing and mutation induction in human diploid skin fibroblasts. Carcinogenesis 7:1829–1836;1986.

    PubMed  Article  CAS  Google Scholar 

  18. Frederick, C. B.; Potter, D. W.; Chang-Mateu, M. I.; Andersen, M. E. A physiologically based pharmacokinetic and pharmacodynamic model to describe the oral dosing of rats with ethyl acrylate and its implications for risk assessment. Toxicol. Appl. Pharmacol. 114:246–260; 1992.

    PubMed  Article  CAS  Google Scholar 

  19. Freeman, B. A.; Crapo, J. D. Biology of disease: free radicals and tissue injury. Lab. Investig. 47:412–426; 1982.

    PubMed  CAS  Google Scholar 

  20. Furukawa, T.; Kubota, T. Suto, A., et al. Clinical usefulness of chemosensitivity testing using the MTT assay. J. Surg. Oncol. 48:188–193; 1991.

    PubMed  Article  CAS  Google Scholar 

  21. Ghanayem, B. L.; Burka, L. T.; Matthews, H. B. Ethyl acrylate distribution, macromolecular binding, excretion, and metabolism in male Fisher 344 rats. Fundam. Appl. Toxicol. 9:389–397; 1987.

    PubMed  Article  CAS  Google Scholar 

  22. IARC. Some chemicals used in plastics and elastomers IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Lyon: International Agency for Research on Cancer: 1986.

    Google Scholar 

  23. Katz, A. B.; Taichman, L. B.; A partial catalog of proteins secreted by epidermal keratinocytes in culture. J. Invest. Dermatol. 112:818–821; 1999.

    PubMed  Article  CAS  Google Scholar 

  24. Keepers, J. B. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur. J. Cancer 27:897–900; 1991.

    PubMed  CAS  Article  Google Scholar 

  25. Kligerman, A. D.; Atwater, A. L.; Bryant, M. F., et al. Cytogenetic studies of ethyl acrylate using C57BL/6 mice. Mutagenesis 6:137–141; 1991.

    PubMed  Article  CAS  Google Scholar 

  26. Lawson, R. G.; Jurs, P. C. Cluster analysis of acrylates to guide sampling for toxicity testing. J. Chem. Inf. Comp. Sci. 30:137–144; 1990a.

    Article  CAS  Google Scholar 

  27. Lawson, R. G.; Jurs, P. C. New index for clustering tendency and its application to chemical problems. J. Chem. Inf. Comp. Sci. 30:36–41; 1990b.

    Article  CAS  Google Scholar 

  28. Li, L.; Lau, B. H. S. A simplified in vitro model of oxidant injury using vascular endothelial cells. In Vitro Cell. Dev. Biol. 29A:531–536; 1993.

    Article  CAS  Google Scholar 

  29. Miller, R. R.; Ayres, J. A.; Jersey, G. C.; McKenna, M. J. Inhalation toxicity of acrylic acid. Fundam. Appl. Toxicol. 1:271–277; 1981.

    PubMed  CAS  Google Scholar 

  30. Miller, R. R.; Young, J. T.; Kociba, R. J., et al. Chronic toxicity and oncogenicity bioassay of inhaled ethyl acrylate in Fisher 344 rats and B6C3F1 mice. Drug Chem. Toxicol. 8:1–42; 1985.

    PubMed  CAS  Google Scholar 

  31. Miyachi, Y.; Yoshioka, S.; Imamura, S.; Niwa, Y. Polymorphonuclear leukocyte-derived reactive oxygen species in inflammatory diseases. In: Hayaishi, S.; Miyachi, Y., ed. The biological role of reactive oxygen species in skin. New York: Elsevier; 1987.

    Google Scholar 

  32. Moore, M. M.; Amtower, A.; Doerr, C. L., et al. Genotoxicity of acrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate in L5178Y lymphoma cells. Environ. Mol. Mutagen. 11:49–63; 1988.

    PubMed  Article  CAS  Google Scholar 

  33. Moore, M. M.; Harrington-Brock, K.; Doerr, C. L.; Dearfield, K. L. Differential mutant quantitation at the mouse lymphomatk and CHOhgprt loci. Mutagenesis 4:394–403; 1989.

    PubMed  Article  CAS  Google Scholar 

  34. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63; 1983.

    PubMed  Article  CAS  Google Scholar 

  35. Moysan, A.; Clement-Lacroix, P.; Michel, L., et al. Effects of ultraviolet A and antioxidant defense in cultured fibroblasts and keratinocytes. Photodermatol. Photoimmunol. Photomed. 11:192–197; 1996.

    PubMed  CAS  Google Scholar 

  36. Niggli, H. J.; Applegate, L. A. Glutathione response after UVA irradiation in mitotic and postmitotic human skin fibroblasts and keratinocytes. Photochem. Photobiol. 65:680–684; 1997.

    PubMed  CAS  Google Scholar 

  37. NTP (National Toxicology Program). Carcinogenesis studies of ethyl acrylate (CAS No. 140-88-5) in F334/N rats and B6C3F1 mice (gavage studies). U.S. Department of Health and Humans Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC; 1986.

    Google Scholar 

  38. Nylander-French, L. A.; Fischer, T.; Hultengren, M., et al. Assessment of worker exposure in the processing of ultraviolet radiation-cured acrylate lacquer-coated wood products. Appl. Occup. Environ. Hyg. 9:962–976; 1994.

    CAS  Google Scholar 

  39. Nylander-French, L. A.; French, J. E. Tripropylene glycol diacrylate but not ethyl acrylate induces skin tumors in a twenty-week short-term tumorigenesis study in Tg. AC (v-Ha-ras) mice. Toxicol. Pathol. 26: 476–483; 1998.

    PubMed  CAS  Article  Google Scholar 

  40. Raza, H.; Agarwal, R.; Mukhtar, H. Cutaneous glutathioneS-transferases. In: Mukhtar, H., ed. Pharmacology of the skin. Boca Raton, FL: CRC Press; 1992:132–137.

    Google Scholar 

  41. Silver, E. H.; Murphy, S. D. Potentiation of acrylate ester toxicity by prior treatment with the carboxylesterase inhibitor triorthotolyl phosphate (TOTP). Toxicol. Appl. Pharmacol. 57:208–219; 1981.

    PubMed  Article  CAS  Google Scholar 

  42. Spalding, J. W.; French, J. E.; Tice, R. R., et al. Development of transgenic mouse model for carcinogenesis bioassays: evaluation of chemically induced skin tumors in Tg. AC mice. Toxicol. Sci. 49:241–254; 1999.

    PubMed  Article  CAS  Google Scholar 

  43. Tennant, R.; Stasiewicz, S.; Mennear, J., et al. Genetically altered mouse models for identifying carcinogens. In: McGregor, D.; Rice, J.; Venitt, S., ed. The use of short- and medium-term tests for carcinogens and data on genetic effects in carcinogenic hazard evaluation. Vol. 146. Lyon: International Agency for Cancer Research; 1999:123–150.

    Google Scholar 

  44. Wenzel-Hartung, R. P.; Brune, H.; Klimisch, H.-J. Dermal oncogenecity study of 2-ethylhexyl acrylate by epicutaneous application in male C3H/HeJ mice. J. Cancer Res. Clin. Oncol. 115:543–549; 1989.

    PubMed  Article  CAS  Google Scholar 

  45. Yohn, J. J.; Norris, D. A.; Yrastorza, D. G., et al. Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes, and melanocytes. J. Invest. Dermatol. 97:405–409; 1991.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leena A. Nylander-French.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nylander-French, L.A., French, J.E. Comparative in vitro cytotoxicity of ethyl acrylate and tripropylene glycol diacrylate to normal human skin and lung cells. In Vitro Cell.Dev.Biol.-Animal 36, 611 (2000). https://doi.org/10.1007/BF02577529

Download citation

Key words

  • acrylates
  • cytotoxicity
  • human keratinocytes
  • fibroblasts
  • bronchiolar cells