Skip to main content
Log in

Ischemia reperfusion of the pancreas: A new in vivo model for acute pancreatitis in rats

  • Original Papers
  • Published:
Research in Experimental Medicine

Abstract

Based on the concept that ischemia is an important factor in the pathogenesis of acute pancreatitis, we developed a new model of complete ischemia/reperfusion of the pancreas in the rat. The aim of this study was to investigate the microcirculation of the pancreas after complete and reversible ischemia at different times after reperfusion by using intravital fluorescence microscopy. In addition, the effect of ischemia/reperfusion on the pancreas was assessed by means of light and electron microscopy and measurement of serum pancreas amylase concentration. In 35 adult Sprague-Dawley rats ischemia of the pancreas was induced by temporary occlusion of the four supplying arteries. Sham-operated animals served as controls (group A). After periods of 30 min (group B), 60 min (group C) or 120 min (group D) of ischemia the organ was reperfused. To exclude the influence of hypovolemia on microcirculation in group E (120 min ischemia) hydroxyethylstarch (HES) was given i.v. to maintain central venous pressure at baseline values. For intravital fluorescence microscopy the pancreas was exteriorized on a stage and quantitative analysis of microcirculation, including functional capillary density and leukocyte-endothelium interaction, was performed after 30 min, 1 h and 2 h of reperfusion. Serum pancreas-amylase was measured at control (prior ischemia) and at 2 h after reperfusion. Tissue samples for light and electron microscopy were taken 2 h after reperfusion. In sham-operated animals, functional capillary density (FCD) remained within baseline values (FCD 407.7±9 cm−1) during reperfusion. Dependent on the time of ischemia and time of reperfusion a gradual reduction in functional capillary density was observed; after 2 h of ischemia only 35% of capillaries were perfused (FCD 140.9±28.3 cm−1). Reduced functional capillary density was associated with an increase of perfusion heterogeneity to a maximum of 0.65±0.12, as against 0.13±0.02 in control animals. With a 2 h ischemia leukocyte-endothelium interaction was enhanced after 0.5 h of reperfusion (8-fold increase of adherent leukocytes in comparison to control) followed by a further significant increase until 2 h after the beginning of reperfusion. Amylase concentration after ischemia of 2 h (2967±289 U/l) was significantly higher as compared to controls (1857±99 U/l). Differences between group E and D were not observed. Pancreatic tissue injury was ascertained by histopathological studies. These results indicate that complete ischemia/reperfusion of the pancreas induces pancreatic microvascular failure. The severity of changes depends on duration of ischemia and duration of reperfusion. The morphological and biochemical changes suggest that ischemia/reperfusion causes an inflammatory reaction as observed in acute pancreatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson MC, Schiller WR (1968) Microcirculatory dynamics in the normal and inflamed pancreas. Am J Surg 115:118–127

    Article  PubMed  CAS  Google Scholar 

  2. Becker H, Vinten-Johansen J, Buckberg G, Bugyi H (1982) Correlation of pancreatic blood flow and high-energy phosphates during experimental pancreatitis. Eur Surg Res 14:203–210

    PubMed  CAS  Google Scholar 

  3. Broe PJ, Zuidema GD, Cameron JL (1982) The role of ischemia in acute pancreatitis: studies with an isolated perfused canine pancreas. Surgery 91:377–382

    PubMed  CAS  Google Scholar 

  4. Busing M, Hopt UT, Schareck WD, Quacken M, Morgenroth K (1990) Ultrastructural changes of human pancreatic allografts after cold ischemia and reperfusion. Transplant Proc 22:612–613

    PubMed  CAS  Google Scholar 

  5. Busing M, Hopt UT, Quacken M, Becker HD, Morgenroth K (1993) Morphological studies of graft pancreatitis following pancreas transplantation. Br J Surg 80:1170–1173

    Article  PubMed  CAS  Google Scholar 

  6. Chiasson RB (1958) Laboratory anatomy of the white rat, Brown, Dubuque

    Google Scholar 

  7. Del Castillo FC, Harringer W, Warshaw AL, Vlahakes GJ, Koski G, Zaslavsky AM, Rattner DW (1991) Risk factors for pancreatic cellular injury after cardiopulmonary bypass. N Engl J Med 325:382–387

    Article  Google Scholar 

  8. Feiner H (1976) Pancreatitis after cardiac surgery. Am J Surg 131:684–688

    Article  PubMed  CAS  Google Scholar 

  9. Fiebig E, Ley K, Arfors KE (1991) Rapid leukocyte accumulation by “spontaneous” rolling and adhesion in the exteriorized rabbit mesentery. Int J Microcirc Clin Exp 10:127–144

    PubMed  CAS  Google Scholar 

  10. Fleischer GM, Herden P, Spormann H (1984) Tierexperimentelle Untersuchungen zur Rolle der Ischämie in der Pathogenese der akuten Pankreatitis. Z Exp Chir Transplant Kunstl Org 3:179–187

    Google Scholar 

  11. Granger DN, Kubes P (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 55:662–675

    PubMed  CAS  Google Scholar 

  12. Granger DN, Kvietys PR, Perry MA (1993) Leukocyte-endothelial cell adhesion induced by ischemia and reperfusion. Can J Physiol Pharmacol 71:67–75

    PubMed  CAS  Google Scholar 

  13. Gress TM, Arnold R, Adler G (1990) Structural alterations of pancreatic microvasculature in cerulein-induced pancreatis in the rat. Res Exp Med (Berl) 190:401–412

    Article  CAS  Google Scholar 

  14. Hebel R, Stromberg MW (1976) Anatomy of the laboratory rat. Williams & Wilkins, Baltimore, pp 101–104

    Google Scholar 

  15. Kelly DM, McEntee GP, McGeeney KF, Fitzpatrick JM (1993) Microvasculature of the pancreas, liver, and kidney in cerulein-induced pancreatitis. Arch Surg 128:293–295

    PubMed  CAS  Google Scholar 

  16. Klar E, Endrich B, Messmer K (1990) Microcirculation of the pancreas. A quantitative study of physiology and changes in pancreatitis. Int J Microcirc Clin Exp 9:85–101

    PubMed  CAS  Google Scholar 

  17. Kusterer K, Enghofer M, Zendler S, Blöchle C, Usadel KH (1991) Microcirculatory changes in sodium taurocholate-induced pancreatitis in rats. Am J Physiol 260:G346-G351

    PubMed  CAS  Google Scholar 

  18. Kusterer K, Poschmann T, Friedemann A, Enghofer M, Zendler S, Usadel KH (1993) Arterial constriction, ischemia-reperfusion, and leukocyte adherence in acute pancreatitis. Am J Physiol 265:G165-G171

    PubMed  CAS  Google Scholar 

  19. Lefer AM, Lefer DJ (1993) Pharmacology of the endothelium in ischemia reperfusion and circulatory shock. Annu Rev Pharmacol Toxicol 33:71–90

    Article  PubMed  CAS  Google Scholar 

  20. Lehr HA, Hübner C, Nolte D, Kohlschütter A, Messmer K (1991) Dietary fish oil blocks the microcirculatory manifestations of ischemia-reperfusion injury in striated muscle in hamsters. Proc Natl Acad Sci USA 88:6726–6730

    Article  PubMed  CAS  Google Scholar 

  21. Menger MD, Sack F-U, Barker JH, Feifel G, Messmer K (1988) Quantitiative analysis of microcirculatory disorders after prolonged ischemia in skeletal muscle: therapeutic effects of prophylactic isovolemic hemodilution. Res Exp Med 188:151–165

    Article  CAS  Google Scholar 

  22. Menger MD, Pelikan S, Steiner D, Messmer K (1992) Microvascular ischemia/reperfusion injury in striated muscle: significance of “reflow-paradox”. Am J Physiol 263:H1901-H1906

    PubMed  CAS  Google Scholar 

  23. Menger MD, Steiner D, Messmer K (1992) Microvascular ischemia/reperfusion injury in striated muscle: significance of “no reflow”. Am J Physiol 263:H1892-H1900

    PubMed  CAS  Google Scholar 

  24. Menger MD, Vollmar B, Glasz J, Post S, Messmer K (1993) Microcirculatory manifestations of hepatic ischemia/reperfusion injury. Prog Appl Microcirc 19:106–124

    Google Scholar 

  25. Messmer K, Sack FU, Menger MD, Barker JH, Hammersen F (1988) White cell-endothelial interaction during postischemic reperfusion of skin and skeletal muscle. In: Chien S (ed) Vascular endothelium in health and diasease. (Advances in experimental medicine and biology, vol 242) Plenum Press, New York, pp 95–98

    Google Scholar 

  26. Nordback IH, Clemens JA, Chacko VP, Olson JL, Cameron JL (1991) Changes in high-energy phosphate metabolism and cell morphology in four models of acute experimental pancreatitis. Ann Surg 213:341–349

    Article  PubMed  CAS  Google Scholar 

  27. Nuutinen P, Kivisaari L, Standertskjöld-Nordenstam C-G, Lempinen M, Schröder T (1986) Microangiography of the pancreas in experimental oedemic and haemorrhagic pancreatitis. Scand J Gastroenterol 21 [Suppl 126]:12–17

    Google Scholar 

  28. Panum P (1886) Experimentelle Beiträge zur Lehre von der Embolie. Virchows Arch [A] 25:308

    Google Scholar 

  29. Popper H, Necheles H, Russel K (1984) Transition of pancreatic edema into pancreatic necrosis. Surg Gynecol Obstet 87:79–82

    Google Scholar 

  30. Probstein JG, Joshi RA, Blumenthal HT (1957) Atheromatous embolization. An etiology of acute pancreatitis. Arch Surg 75:566–572

    CAS  Google Scholar 

  31. Redha F, Uhlschmid G, Ammann RW, Freiburghaus AU (1990) Injection of microspheres into pancreatic arteries causes acute hemorrhagic pancreatitis in the rat: a new animal model. Pancreas 5:188–193

    Article  PubMed  CAS  Google Scholar 

  32. Schmid-Schoenbein GW, Zweifach BW, Kovalcheck S (1977) The application of stereological principles to morphometry of the microcirculation in different tissues. Microvasc Res 14:303–317

    Article  PubMed  CAS  Google Scholar 

  33. Schoenberg MH, Büchler M, Gaspar M, Stinner A, Younes M, Melzner I, Bultmann B, Beger HG (1990) Oxygen free radicals in acute pancreatitis of the rat. Gut 31:1138–1143

    PubMed  CAS  Google Scholar 

  34. Slater DN, Bardsley D, Mangnall Y, Smythe A, Fox M (1975) Pancreatic ischemia; sensitivity and reversibility of the changes. Br J Exp Pathol 56:530–536

    PubMed  CAS  Google Scholar 

  35. Sokolowski A, Spormann H, Urbahn H, Letko G (1986) Contribution of pancreatic edema and short-term ischemia to experimental acute pancreatitis in the rat. Z Exp Chir Transplant Kunstl Org 6:331–339

    Google Scholar 

  36. Spormann H, Sokolowski A, Letko G (1989) Effekt of temporary ischemia upon development and histological patterns of acute pancreatitis in the rat. Pathol Res Pract 184:507–513

    PubMed  CAS  Google Scholar 

  37. Strock PE, Majno G (1969) Microvascular changes in acutely ischemic rat muscle. Surg Gynecod Obstet 129:1213–1224

    CAS  Google Scholar 

  38. Takahasi T, Yaginuma N (1985) Ischemic injury of the human pancreas. Its basic patterns correlated with the pancreatic microvasculature. Pathol Res Pract 179:645–651

    Google Scholar 

  39. Tamura K, Manabe T, Kyogoku T, Andoh K, Ohshio G, Tobe T (1993) Effect of postischemic reperfusion on the pancreas. Hepatogastroenterology 40:452–456

    PubMed  CAS  Google Scholar 

  40. Waldner H, Schmand J, Vollmar B, Goetz A, Conzen P, Schweiberer L, Brendel W (1990) Die Pankreasdurchblutung bei der experimentellen biliären Pankreatitis. Langenbecks Arch Chir 375:112–118

    Article  PubMed  CAS  Google Scholar 

  41. Warshaw AL, O'Hara PJ (1978) Susceptibility of the pancreas to ischemic injury in shock. Ann Surg 188:197–201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, T.F., Leiderer, R., Waldner, H. et al. Ischemia reperfusion of the pancreas: A new in vivo model for acute pancreatitis in rats. Res. Exp. Med. 195, 125–144 (1995). https://doi.org/10.1007/BF02576782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576782

Key words

Navigation