Skip to main content
Log in

Lovastatin ameliorates depressed intraglomerular proteolytic activities in experimental nephrotic syndrome

  • Original Papers
  • Published:
Research in Experimental Medicine

Abstract

Lipid abnormalities have been implicated in the pathogenesis of glomerulosclerosis in experimental models of kidney disease. In previous studies it has been shown that Adriamycin-induced nephropathy is associated with reduced activities of glomerular proteinases. This observation led to the hypothesis that reduced proteolytic activities may be responsible for mesangial protein accumulation, which ultimately leads to global sclerosis of the glomerular tuft. The aim of the present study was to investigate whether lovastatin treatment, which prevents progressive glomerulosclerosis in experimental nephrotic syndrome, would also have an effect on glomerular proteinase activities. Adriamycin administration resulted in a persistent nephrotic syndrome with gross proteinuria (377±26 mg/24 h), hypoalbuminemia (2.1±0.12 vs. 2.8±0.02 g/dl), hypercholesterolemia (575±74 vs. 68±1.5 mg/dl) and elevated triglyceride levels (1,155±78 vs. 57±8 mg/dl). Glomerular azocaseinolytic activities both at pH 5.4 (−21%) and 7.4 (−37%) were significantly reduced. In contrast to human subjects, nephrotic rats that were treated with lovastatin displayed reduced triglyceride levels (767±134 mg/dl); their serum cholesterol, however, remained unchanged. In terms of glomerular proteolytic enzyme activities, the decline in azocaseinolysis at both pH values was, at least partly, prevented by lovastatin. On the basis of these data, it appears that the beneficial effect of lovastatin on the evolution of glomerulosclerosis in the nephrotic rat is associated with the conservation of glomerular proteolytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keane WF (1994) Lipids and the kidney. Kidney Int 46:910–920

    PubMed  CAS  Google Scholar 

  2. Diamond JR, Karnovsky UJ (1988) Focal and segmental glomerulosclerosis: Analogies to atherosclerosis. Kidney Int 33:917–924

    PubMed  CAS  Google Scholar 

  3. Kasiske BL, O'Donnell MP, Schmitz PG, Kim Y, Keane WF (1990) The renal injury of dietinduced hypercholesteriemia in rats. Kidney Int 37:880–891

    PubMed  CAS  Google Scholar 

  4. Diamond JR, Karnovsky MJ (1987) Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation. Kidney Int 32:617–678

    Google Scholar 

  5. Baxter JH (1962) Hyperlipoproteinemia in nephrosis. Arch Int Med 109:742–757

    CAS  Google Scholar 

  6. Harris KPG, Purkerson ML, Yates J, Klahr S (1990) Lovastatin ameliorates the development of glomerulosclerosis and uremia in experimental nephrotic syndrome. Am J Kidney Dis 15:16–23

    PubMed  CAS  Google Scholar 

  7. Klahr S, Schreiner G, Ichikawa I (1988) The progression of renal disease. N Engl J Med 318:1657–1666

    Article  PubMed  CAS  Google Scholar 

  8. Grond J, Koudstaal J, Elema D (1985) Mesangial function and glomerular sclerosis in rats with aminonucleoside nephrosis. Kidney Int 27:405–410

    PubMed  CAS  Google Scholar 

  9. Davis M, Martin J, Thomas GJ, Coles GA, Lovett DH (1987) Degradation of glomerular extracellular matrices. In: Price RG, Hudson B (eds) Renal basement membranes in health and disease. Academic Press, London, pp 181–201

    Google Scholar 

  10. Schaefer RM, Paczek L, Huang S, Teschner M, Schaefer L, Heidland A (1992) Role of glomerular proteinase in the evolution of glomerulosclerosis. Eur J Clin Chem Clin Biochem 30:641–646

    PubMed  CAS  Google Scholar 

  11. Paczek L, Teschner M, Schaefer RM, Kovar J, Romen W, Heidland A (1992) Intraglomerular proteinase activity in Adriamycin-induced nephropathy. Nephron 60:81–86

    PubMed  CAS  Google Scholar 

  12. Schaefer L, Schaefer RM, Ling H, Teschner M, Heidland A (1994) Renal proteinases and kidney hypertrophy in experimental diabetes. Diabetologia 37:567–571

    PubMed  CAS  Google Scholar 

  13. Okuda S, Ohy O, Touruda H, Onoyama K, Fujimi S, Fuhishima M (1986) Adriamycin-induced nephropathy as a model of chronic progressive glonerular disease. Kidney Int 29:502–510

    PubMed  CAS  Google Scholar 

  14. Spiro RG (1967) Studies on the renal glomerular basement membrane. Preparation and chemical composition. J Biol Chem 242:1915–1919

    PubMed  CAS  Google Scholar 

  15. Lange J, Wakil A, Zimmermann M, Ansorg S, Bohley P, Kirschke H, Wiederanders D (1973) Aktivitätsbestimmung proteolytischer Enzyme mit Azocasein also Substrat. Acta Biol Med Germ 31:1–18

    Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AC, Randall RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  17. Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 458–568

    Google Scholar 

  18. Ding GH, Pesek-Diamond I, Diamond JR (1993) Cholesterol, macrophages, and gene expression of TGF-beta-1 and fibronectin during nephrosis. Am J Physiol 264:F577-F584

    PubMed  CAS  Google Scholar 

  19. Joles J, Willekes-Koolschijn N, Koomans H, Tol A van, Geelhoed-Mieras T, Crommelin B, Bloois L van, Cohen L, Goiffioen M (1992) Subcutaneous administration of HMG-CoA-reductase inhibitor in hyperlipidaemic and normal rats. Lab Anim 26:269–280

    PubMed  CAS  Google Scholar 

  20. Gröne H-J, Miller B, Walli AK, Eisenhauer T, Gröne E, Seidel D (1992) Reduktion einer Lipid-Glomerulopathie durch den HMG-CoA-Reduktase-Inhibitor Lovastatin im Meerschweinchen. Ein Effekt ohne wesentlichen Abfall des Plasmacholesterins. 23rd Congress of the Gesellschaft für Nephrologie, Nieren- und Hochdruckkrankheiten, Hannover 1992, abstrasts, p278

  21. Kasiske BL, O'Donnell MP, Cleary MP, Keane WF (1988) Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int 33:667–672

    PubMed  CAS  Google Scholar 

  22. O'Donnell MP, Kasiske BL, Kim Y, Atluru D, Keane WF (1993) Lovastatin inhibits parliferation of rat mesangial cells. J Clin Invest 91:83–87

    Article  PubMed  Google Scholar 

  23. Gujiarro C, O'Donnell MP, Kasiske BL, Kim Y, Atluru D, Keane WF (1993) Differential effects of lovastatin on human mesangial cell mRNA for cytokines involved in proliferation and matrix turnover (abstract). J Am Soc Nephrol 4:770

    Google Scholar 

  24. Schaefer L, Teschner M, Hong L, Oldakowska U, Heidland A, Schaefer RM (1994) The aging rat kidney displays low glomerular and tubular proteinase activities. Am J Kidney Dis 24:499–504

    PubMed  CAS  Google Scholar 

  25. Tamaki K, Okuda S, Ando T, Iwamoto T, Nakayama M, Fujishima M (1994) TGF-beta 1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy. Kidney Int 45:525–536

    PubMed  CAS  Google Scholar 

  26. Border WA, Ruoslahti E (1992) TGF-β in disease: the dark side of tissue repair. J Clin Invest 90:1–7

    PubMed  CAS  Google Scholar 

  27. Edwards DR, Murphy G, Reynolds JJ (1987) TGF-β modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 6:1899–1904

    PubMed  CAS  Google Scholar 

  28. Laiho M, Saksela O, keski-Oja J (1987) TGF-β induction of type-1 plasminogen activator inhibitor. J Biol Chem 262:17467–17474

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teschner, M., Paczek, L., Schaefer, L. et al. Lovastatin ameliorates depressed intraglomerular proteolytic activities in experimental nephrotic syndrome. Res. Exp. Med. 194, 349–356 (1994). https://doi.org/10.1007/BF02576397

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576397

Key words

Navigation