Skip to main content
Log in

Changes in cAMP formation in mononuclear leukocytes of heart and renal transplant recipients

  • Original Papers
  • Published:
Research in Experimental Medicine

Abstract

In mononuclear leukocytes (MNL) of renal transplant recipients treated with cyclosporine A and prednisone, an increase of basal cAMP generation has been observed. In order to characterize the mechanisms underlying changes of cAMP generation in patients who were treated with immunosuppressives following heart transplantation, we investigated the β-adrenoceptor—G protein—adenylate cyclase signal transduction cascade in heart transplant recipients and for comparison in renal transplant recipients as well as controls. Basal cAMP formation in MNL was elevated in heart transplant recipients by 27% and in renal transplant recipients by 148% compared to controls. Following β-adrenoceptor stimulation with isoprenaline, cAMP formation in MNL of heart transplant recipients was similar to the controls, but was enhanced in renal transplant recipients to 138%. Investigation of β-adrenoceptor density on MNL as a possible cause for increased cAMP formation revealed similar receptor numbers in controls and in cardiac or renal transplant recipients. Furthermore, the increase of the β-adrenoceptor density on MNL, which is observed following infusion of isoprenaline, was similar in controls and heart transplant recipients. The amount of pertussis- and cholera toxin substrates was the same in heart transplant recipients as in controls. In contrast, MNL of renal transplant recipients showed a marked increase of G by 45% and a smaller albeit significant increase of G by 15%, as judged by cholera toxin and pertussis toxin labeling, respectively. Investigation of inotropic parameters by echocardiography under control conditions and during the infusion of increasing concentrations of isoprenaline revealed no difference in the basal contractility and the inotropic response to β-adrenergic stimulation in controls and heart transplant recipients. It is concluded that changes of G-protein expression are involved in the increase of the cAMP-generation in MNL of heart transplant recipients. These alterations in MNL cannot be taken as a model of cellular function in the transplanted heart, but it is reasonable to suggest that elevations of cAMP formation in MNL may contribute to the immunosuppressive effects of the treatment with cyclosporine A or corticosteroids, the mechanism of which could be an alteration of G or the catalyst in renal transplant recipients and the catalyst in heart transplant recipients which occurs without any changes of β-adrenoceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SDS-PAGE :

sodiumdodecylsulfate polyacrylamide gel electrophoresis

EDD :

enddiastolic left ventricular diameter

ESD :

endsystolic left vertricular diameter

FS :

fractional shortening

P/D :

pressure-dimension-ratio

HTR :

heart transplant recipients

RTR :

renal transplant recipients

G protein :

GTP-binding protein

G :

α subunit of stimulatory G protein

G :

α subunit of inhibitory G protein

T s/c :

T suppressor/cytotoxic lymphocytes (also: T8)

T h :

T helper lymphocytes (also T4)

125 I-Cyp :

[125I]Iodocyanopindolol

References

  1. Bährle SK, Pena M, Ihl-Vahl R, Hitzler W, Oehl U, Marquetant R, Strasser RH (1992) Chronische Immunsuppression mit Cyclosporine sensibilisiert das adrenerge System auf Postrezeptorebene. Z Kardiol 81:129

    Google Scholar 

  2. Billingham ME (1981) Diagnosis of cardiac rejection by endomyocardial biopsy. J Heart Transplant 1:25–29

    Google Scholar 

  3. Böhm M, Gierschik P, Jakobs K-H, Pieske B, Schnabel B, Ungerer M, Erdmann E (1990) Increase of G in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265

    PubMed  Google Scholar 

  4. Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Scan J Clin Lab Invest 21 [Suppl 97]:77–89

    Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of mecrogram quantities of protein utilizing the principle of dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  6. Brodde OE, Kretsch R, Ikezono K, Zerkowski H-R, Reidemeister JC (1986) Human β-adrenoceptors: relation of myocardial and lymphocyte β-adrenoceptor density. Science 231:1584–1585

    Article  PubMed  CAS  Google Scholar 

  7. Brodde OE, Beckeringh JJ, Michel MC (1987) Human β-adrenoceptors: a fair comparison with lymphocyte β-adrenoceptor? Trends Pharmacol Sci 8:403–407

    Article  CAS  Google Scholar 

  8. Brodde OE, Khamssi M, Zerkowski HR (1991) β-Adrenoceptors in the transplanted human heart: unaltered β-adrenoceptor density, but increased proportion of β2-adrenoceptors with increasing posttransplant time. Naunyn Schmiedebergs Arch Pharmacol 344:430–436

    Article  PubMed  CAS  Google Scholar 

  9. Callingham BA, Burgen ASV (1966) The uptake of isoprenaline and noradrenaline by the perfused rat heart. Mol Pharmacol 2:37–42

    PubMed  CAS  Google Scholar 

  10. Cassel D, Selinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74:3307–3311

    Article  PubMed  CAS  Google Scholar 

  11. Chang FH, Bourne HR (1987) Dexamethasone increases adenylyl cyclase activity and expression of the α-subunit of Gs in GH3 cells. Endocrinology 1987; 121:1711–1715

    PubMed  CAS  Google Scholar 

  12. Cooper DM, Londos C, Rodbell M (1980) Adenosine receptor-mediated inhibition of rat cerebral cortical adenylate cyclase by a GTP-dependent process. Mol Pharmacol 18: 598–601

    PubMed  CAS  Google Scholar 

  13. Dempsey PJ, Cooper T (1968) Supersensitivity of the chronically denervated feline heart. Am J Physiol 215:1245–1249

    PubMed  CAS  Google Scholar 

  14. Denniss RA, James DM, Rebecca JQ, Gordon JB, Colucci WS (1989) β-adrenergic receptor number and adenylate cyclase function in denervated transplanted and cardiomyopathic human hearts. Circulation 79:1028–1034

    PubMed  CAS  Google Scholar 

  15. Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197

    PubMed  CAS  Google Scholar 

  16. Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36:577–579

    Article  PubMed  CAS  Google Scholar 

  17. Gilman AG (1987) G proteins: Transducers of receptor-generated signal. Ann Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  18. Goldstein HS, Horwitz D, Keiser HR, Polinski RJ, Kopin IJ (1983) Plasma3H-1-norepinephrine,14C-d-norepinephrine, and3H-d, 1-isoproterenol kinetics in essential hypertension. J Clin Invest 72:1748–1758

    PubMed  CAS  Google Scholar 

  19. Hauck RW, Böhm M, Gengenbach S, Sunder-Plassmann L, Fruhmann G, Erdmann E (1990) β2-adrenoceptors in human lung and peripheral mononuclar leukocytes of untreated and terbutaline-treated patients. Chest 98:376–381

    PubMed  CAS  Google Scholar 

  20. Horn EM, Corwin SJ, Steinberg SF, Chow YK, Neuberg GW, Cannon PJ, Powers ER, Bilezikian JP (1988) Reduced lymphocyte stimulatory guanine nucleotide regulatory protein and β-adrenergic receptors in congestive heart failure and reversal with angiotensin converting enzyme inhibitor therapy. Circulation 78:1373–1379

    PubMed  CAS  Google Scholar 

  21. Kammer GM (1988) The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunology Today 1988; 9:222–229

    Article  PubMed  CAS  Google Scholar 

  22. Kass DA (1988) Evaluation of left-ventricular systolic function. Heart Failure 4:198–205

    Google Scholar 

  23. Laemmli UD (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  24. Lonabough JP, Vatner DE, Vatner SF, Homcy CY (1988) Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overoad left ventricular failure. J Clin Invest 81:420–424

    Article  Google Scholar 

  25. Maisel AS, Michel MC, Insel PA, Ennis C, Ziegler MG, Phillips C (1990) Pertussis toxin treatment of whole blood. Circulation 81:1198–1204

    PubMed  CAS  Google Scholar 

  26. Michel MC, Brodde OE (1989) Lymphocyte adenylate cyclase activity in immunosuppressed patients. Eur J Clin Pharmacol 37:41–43

    PubMed  CAS  Google Scholar 

  27. Milligan G (1988) Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J 255:1–13

    PubMed  CAS  Google Scholar 

  28. Moss J, Vaughan M (1988) ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol 61:13303–13379

    Google Scholar 

  29. Neumann J, Scholz H, Döring V, Schmitz W, v Meyerinck L, Kalmar P (1988) Increase in myocardial G1-proteins in heart failure. Lancet II:936–937

    Article  Google Scholar 

  30. Ohisalo JJ, Milligan G (1989) Guanine-nucleotide-binding proteins Gi and Gs in fat-cells from normal, hypothyroid and obese human subjects. Biochem J 260:843–847

    PubMed  CAS  Google Scholar 

  31. Port JD, Gilbert EM, Larrabee P, Mealey P, Volkman K, Ginsburg R, Hershberger RE, Murray J, Bristow MR (1990) Neurotransmitter depletion compromises the ability of indirect-acting amines to provide inotropic support in the failing human heart. Circulation 81:929–938

    PubMed  CAS  Google Scholar 

  32. Rowan RA, Billingham ME (1988) Myocardial innervation in long-term heart transplant survivors: a quantitative ultrastructural survey. J Heart Transplant 7:448–452

    PubMed  CAS  Google Scholar 

  33. Sahn DJ, Demaria A, Kisslo J, Weyman A (1978) Recommendations regarding quantitation in M-mode echocardiography: results of survey of echocardiographic measurements. Circulation 58:1972–1978

    Google Scholar 

  34. Steinfath M, Schmitz W, Scholz H, von der Leyen H, Hecht A, Haverich A Heublein B (1992) β-adrenergic receptor number in surgically denervated, transplanted human hearts. Anesthesiology 76:863–864

    Article  Google Scholar 

  35. van Tits LJH, Michel MC, Grosse-Wilde H, Happel M, Eigler FW, Soliman A, Brodde OE (1990) Catecholamines increase lymphocyte β2-adrenergic receptors via a β2-adrenergic, spleen-dependent process. Am J Physiol 258:E191-E202

    PubMed  Google Scholar 

  36. van Tits LJH, Daul A, Bauch HJ, Grosse-Wilde H, Happel M, Michel MC, Brodde OE (1990) Effects of insulin-induced hypoglycemia on β2-adrenoceptor density and proliferative responses of human lymphocytes. J Clin Endocrinol Metab 71:187–192

    Article  PubMed  Google Scholar 

  37. Vatner DE, Lavallee M, Amano J, Finizola A, Homcy CJ, Vatner SF (1985) Mechanisms of supersensitivity to sympathomimetic amines in the chronically denervated heart of the conscious dog. Circ Res 57:55–64

    PubMed  CAS  Google Scholar 

  38. v. Scheidt W, Böhm M, Schneider B, Reichart B, Erdmann E, Autenrieth G (1992) Isolated presynaptic inotropic β-adrenergic supersensitivity of the transplanted, denervated human heart in vivo. Circulation 85:1056–1063

    Google Scholar 

  39. Weinstein LS, Spiegel AM, Carter AD (1988) Cloning and characterization of the human gene for the α-subunit of Gi2, a GTP-binding signal transducing protein. FEBS Lett 232: 333–340

    Article  PubMed  CAS  Google Scholar 

  40. Wharton J, Polak JM, Gordon L, Banner NR, Springall DR, Rose M, Khagani A, Wallwork J, Yacoub MH (1990) Immunohistochemical demonstration of human cardiac innervation before and after transplantation. Circ Res 66:900–912

    PubMed  CAS  Google Scholar 

  41. Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP-regulating protein Gk. Science 235:207–211

    Article  PubMed  CAS  Google Scholar 

  42. Yusuf S, Phil D, Theodoropoulos S, Mathias CJ, Dhalla N, Wittes J, Mitchell A, Yacoub M (1987) Increased sensitivity of the denervated transplanted human heart to isoprenaline both before and after β-adrenergic blockade. Circulation 75:696–704

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lensche, H., Diet, F., von Scheidt, W. et al. Changes in cAMP formation in mononuclear leukocytes of heart and renal transplant recipients. Res. Exp. Med. 194, 81–96 (1994). https://doi.org/10.1007/BF02576369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576369

Key words

Navigation