CALCOLO

, Volume 30, Issue 4, pp 371–394 | Cite as

The hermite interpolation

  • B. Della Vecchia
  • G. Mastroianni
Article

Abstract

The authors obtain new results on Hermite interpolation based on Jacobi and generalized Jacobi zeros in C1 space and prove error estimates in uniform and weighted Lp norms. The paper gives also the state of art on the topic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. M. Badkov,Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR-Sb. 24 (1974), 223–256.CrossRefGoogle Scholar
  2. [2]
    G. Criscuolo, B. Della Vecchia, G. Mastroianni,Hermite interpolation and mean convergence of its derivatives, Calcolo 1, 2, 28 (1991), 111–127.Google Scholar
  3. [3]
    G. Criscuolo, B. Della Vecchia, G. Mastroianni Approximation by extended Hermite-Fejer and Hermite interpolation, Colloq. Math. Soc. Janos Bolyai 58 (1991), 151–178.Google Scholar
  4. [4]
    G. Criscuolo, B. Della Vecchia, G. Mastroianni,Hermite-Fejér and Hermite interpolation, Proceedings of NATO-ASI Conference on Approximation Theory, Spline Functions and Applications, Maratea (ed. by S. P. Singh) (1991), 317–331.Google Scholar
  5. [5]
    G. Criscuolo, B. Della Vecchia, G. Mastroianni,Extended Hermite interpolation with additional nodes and mean convergence of its derivatives, Rend. Mat. Appl., Serie VII, 12 (1992), 709–728.MATHGoogle Scholar
  6. [5]
    G. Criscuolo, B. Della Vecchia, G. Mastroianni,Hermite interpolation on two new nodes matrices, Proceedings of International Conference on Constructive Theory of functions (Varna, Bulgaria) (1992), 93–98.Google Scholar
  7. [7]
    G. Criscuolo, B. Della Vecchia, G. Mastroianni,Extended Hermite interpolation on Jacobi zeros and mean convergence of its derivatives, Facta Universitatis Nix (1992).Google Scholar
  8. [8]
    G. Criscuolo, B. Della Vecchia, G. Mastroianni,Approximation by Hermite-Fejer and Hermite interpolation, to appear in Jour. Approx. Theory and its Applications, (1993).Google Scholar
  9. [9]
    G. Criscuolo, G. Mastroianni,Lagrange interpolation on generalized Jacobi zeros with additional nodes, to appear on Acta Math. Hungar. (1993).Google Scholar
  10. [10]
    G. Criscuolo, G. Mastroianni,Mean and Uniform Convergence of Quadrature Rules for Evaluating the Finite Hilbert Transform, Progress in Approx. Th. (1991), 141–175.Google Scholar
  11. [11]
    G. Criscuolo, G. Mastroianni, P. Nevai,Mean Convergence of derivatives of extended Lagrange interpolation with additional nodes, Math. Nachr. 163 (1993).Google Scholar
  12. [12]
    B. Della Vecchia, G. Mastroianni, P. Vértesi,Simultaneous approximation by Hermite interpolation of higher order, to appear in J. Comp. Appl. Math. (1993).Google Scholar
  13. [13]
    B. Della Vecchia, G. Mastroianni, P. Vértesi,Weighted L p approximation by Hermite interpolation of higher order plus endpoints, to appear in Studia Sci. Hungar. (1993).Google Scholar
  14. [14]
    V. K. Dzyadik,Introduction to the theory of uniform approximation of functions by polynomials, Nauka (Moskan, 1977) (in Russian).Google Scholar
  15. [15]
    I. E. Gopengauz,On a theorem of A.F. Timan on the approximation of functions by polynomials on a finite segment, Math. Notes 1 (1967), 110–116 (in Russian).MathSciNetGoogle Scholar
  16. [16]
    P. Nevai,Orthogonal Polynomials, Mem. Amer. Math. Soc.,213, Providence, Rhode Island, 1979.Google Scholar
  17. [17]
    P. Nevai,Bernstein's inequality in L p,for 0<p<∞, J. Approx. Theory 27 (1979), 239–243.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    P. Nevai,Mean convergence of Lagrange interpolation III, Trans. Amer. Math. Soc. 282 (1984), 669–698.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    P. Nevai, Y. Xu,Mean convergence of Hermite interpolation, to appear in J. Approx. Theory (1993).Google Scholar
  20. [20]
    J. Szabados,On the order of magnitude of fundamental polynomials of Hermite interpolation, Acta Math. Hungar. 61 (1993).Google Scholar
  21. [21]
    G. Szego,Orthogonal Polynomials, Amer. Math. Soc. n. 23, (1939).Google Scholar
  22. [22]
    P. Vértesi,Remarks on mean convergence of Hermite interpolation, submitted (1992).Google Scholar
  23. [23]
    P. Vértesi, Y. Xu,Weighted L p convergence of Hermite interpolation of higher order, Acta Math. Hungar. 59 (3–4) (1992), 423–438.CrossRefMathSciNetGoogle Scholar
  24. [24]
    Y. Xu,Norm of the Hermite interpolation operator, Approx. Theory IV, Vol. II, (1989), (ed. by C. K. Chui, L. L. Schumaker, J. D. Ward), 683–686.Google Scholar
  25. [25]
    Y. Xu,On mean convergence of interpolating polynomials, Colloq. Math. Soc. Jamas Bolyai, 58 (1990), 749–761.Google Scholar

Copyright information

© Instituto di Elaborazione della Informazione del CNR 1995

Authors and Affiliations

  • B. Della Vecchia
    • 1
  • G. Mastroianni
    • 2
    • 3
  1. 1.Dipartimento di Matematica, Istituto G. CastelnuovoUniversità di RomaRomaItalia
  2. 2.Dipartimento di MatematicaUniversità della BasilicataPotenzaItalia
  3. 3.Istituto per Applicazioni della MatematicaC.N.R.NapoliItalia

Personalised recommendations