Skip to main content
Log in

A generalized Schur-type algorithm for the joint factorization of a structured matrix and its inverse

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

A Schur-type algorithm is presented for the simultaneous triangular factorization of a given (non-degenerate) structured matrix and its inverse. The algorithm takes the displacement generator of a Hermitian, strongly regular matrixR as an input, and computes the displacement generator of the inverse matrixR −1 as an output. From these generators we can directly deduce theLD −1 L * (lower-diagonal-upper) decomposition ofR, and theUD −1 U * (upper-diagonallower) decomposition ofR −1. The computational complexity of the algorithm isO(rn 2) operations, wheren andr denote the size and the displacement rank ofR, respectively. Moreover, this method is especially suited for parallel (systolic array) implementations: usingn processors the algorithm can be carried out inO(n) steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Boros, Studies in Displacement Structure Theory. PhD thesis, Stanford University, Stanford, CA, June 1996.

    Google Scholar 

  2. T. Boros, A.H. Sayed, T. Kailath, and H. Lev-Ari,A generalized Schurtype algorithm for the joint factorization of a structured matrix and its inverse, Part I: Non-degenerate case, In preparation.

  3. T. Boros, A. H. Sayed, T. Kailath, and H. Lev-Ari,A generalized Schurtype algorithm for the joint factorization of a structured matrix and its inverse, Part II: Degenerate case, In preparation.

  4. J. Chun, Fast Array Algorithms for Structured Matrices. PhD thesis, Stanford University, Stanford, CA, 1989.

    Google Scholar 

  5. J. Chun andT. Kailath,Displacement structure for Hankel, Vandermonde and related (derived) matrices, Lin. Alg. and Its Appl.151, (1991) 199–227.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. M. Delosme, Algorithms and Implementations for Linear Least-Squares Estimation. PhD thesis, Stanford University, Stanford, CA, 1982.

    Google Scholar 

  7. P. Delsarte, Y. Genin, andY. Kamp,A polynomial approach to the generalized Levinson algorithm. IEEE Trans. Inform. Theory29(2, (March 1983) 268–278.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Friedlander, T. Kailath, M. Morf, andL. Ljung,Extended Levinson and Chandrasekhar equations for general discrete-time linear estimation problems. IEEE Trans. Automatic Control23(4), (August 1978) 653–659.

    Article  MATH  Google Scholar 

  9. Y. Genin, P. Van Dooren, T. Kailath, J. Delosme, andM. Morf,On Σ-lossless transfer functions and related questions. Lin. Alg. and Its Appl.50, (1983) 251–275.

    Article  MATH  Google Scholar 

  10. G. H. Golub and C. F. Van Loan, Matrix Computation. The Johns Hopkins University Press, 2-nd edition, 1989,

  11. T. Kailath,Signal processing in the VLSI era. In S. Y. Kung, H. Whitehouse, and T. Kailath, editors, VLSI and Modern Sign. Proc., pp. 5–24. Prentice Hall, 1985.

  12. T. Kailath,Signal processing applications of some moment problems. In Proc. of Symp. in Appl. Math. vol.37, pp. 71–109. American Math. Soc., 1987.

  13. T. Kailath andJ. Chun,Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices. SIAM J. Matrix Anal. Appl.15(1), (January 1994) 114–128.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Y. Kung andY. H. Hu,A highly concurrent algorithm and pipelined architecture for solving Toeplitz systems. IEEE Trans. on Acoust., Speech, and Sign. Proc.31, (1983) 66–76.

    Article  MATH  Google Scholar 

  15. T. Kailath, S. Y. Kung, andM. Morf,Displacement ranks of a matrix. Bulletin of the American Mathematical Society1(5), (September 1979) 769–773.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Kailath andA. H. Sayed,Displacement structure: Theory and applications. SIAM Review37(3), (1995) 297–386.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Lev-Ari, Nonstationary Lattice-Filter Modeling. PhD thesis, Stanford University, Stanford, CA, December 1983.

    Google Scholar 

  18. H. Lev-Ari andT. Kailath,Lattice filter parametrization and modeling of nonstationary processes. IEEE Trans. Inform. Theory30, (1984) 2–16.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Lev-Ari andT. Kailath,Triangular factorization of structured Hermitian matrices. Operator Theory: Advances and Applications18, (1986) 301–324.

    MathSciNet  Google Scholar 

  20. H. Lev-Ari andT. Kailath,State-space approach to factorization of lossless transfer functions and structured matrices. Lin. Alg. and Its Appl.162–164, (1992) 273–295.

    Article  MathSciNet  Google Scholar 

  21. A.H. Sayed, Displacement Structure in Signal Processing and Mathematics. PhD thesis, Stanford University, Stanford, CA, August 1992.

    Google Scholar 

  22. A. H. Sayed, T. Constantinescu, and T. Kailath,Square-root algorithms for structured matrices, interpolation, and completion problems. In Lin. Alg. for Sign. Proc., vol.69 of IMA Volumes in Math. and its Appl., pp. 153–184. Springer, 1995.

  23. A. H. Sayed, H. Lev-Ari, andT. Kailath,Time-varying displacement structure and triangular arrays. IEEE Trans. Signal Proc.42, (May 1994) 1052–1062.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boros, T., Sayed, A.H., Lev-Ari, H. et al. A generalized Schur-type algorithm for the joint factorization of a structured matrix and its inverse. Calcolo 33, 131–145 (1996). https://doi.org/10.1007/BF02575713

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575713

Keywords

Navigation