Skip to main content
Log in

Solving Toeplitz systems after extension and transformation

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

Subject of the paper are systems of linear equations with an indefinite or nonsymmetric Toeplitz coefficient matrixT=[a i−j ]. In order to avoid instabilities which often occur during the application of Levinson and Schur type algorithms for these matrices transformation techniques combined with pivoting strategies have been proposed in earlier papers, starting with [19]. These transformations have some deficiencies. To overcome these we propose to carry out the transformation after a convenient extension. In particular, we discuss the transformation after extension into paired Vandermonde matrices. The corresponding systems admitO(n 2) complexity complete pivoting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Ammar, W.G. Gragg,Superfast solution of real positive definite Toeplitz systems, SIAM J. Matrix Analysis Appl. 9,1, (1988), 61–76.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Ball, I. Gohberg, L. Rodman, Interpolation of rational matrix functions, Birkhäuser, Basel, Boston, Berlin 1990.

    MATH  Google Scholar 

  3. D. Bini, V. Pan, Polynomial and Matrix Computations, Vol. 1, Fundamental Algorithms, Birkhäuser Boston 1994.

    Google Scholar 

  4. A. Bojanczyk, R. Brent, F. de Hoog, andD. Sweet,On the stability of the Bareiss and related factorization algorithms, SIAM J. Matrix Analysis Appl. 16, 1, (1995) 40–57.

    Article  MATH  Google Scholar 

  5. A. Bojanczyk, G. Heinig,A multi-step algorithm for Hankel matrices, J. of Complexity 10, (1994), 142–164.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Bozzo, C. Di Fiore,On the use of certain matrix algebras associated with discrete trigonometric transforms in matrix displacement decompositions, SIAM J. Matrix Analysis Appl.16, (1995), 312–326.

    Article  MATH  Google Scholar 

  7. S. Cabay, R. Meleshko,A weakly stable algorithm for Padé approximation and the inversion of Hankel matrices, SIAM J. Matrix Analysis Appl.14, (1993) 735–765.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Chan, P. Hansen,A look-ahead Levinson algorithm for indefinite Toeplitz systems, SIAM J. Matrix Analysis Appl.13,2, (1992), 1079–1090.

    MathSciNet  Google Scholar 

  9. G. Cybenko,The numerical stability of Levinson-Durbin algorithm for Toeplitz systems of equations, SIAM J. Sci. Statist. Comp.1, (1980) 303–319.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Fiedler,Hankel and Löwner matrices, Linear Algebra Appl.58, (1984) 75–95.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Freund, H. Zha,A look-ahead strategy for the solution of general Hankel systems, Numer. Mathematik64, (1993) 295–322.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Gohberg, T. Kailath, I. Koltracht, P. Lancaster,Linear complexity parallel algorithms for linear systems of equations with recursive structure, Linear Algebra Appl.88/99, (1987) 271–316.

    Article  MathSciNet  Google Scholar 

  13. I. Gohberg, T. Kailath, V. Olshevsky,Gaussian elimination with partial pivoting for matrices with displacement structure, Math. of Computation64, (1995) 1557–1576.

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Gohberg, I. Koltracht, P. Lancaster,Efficient solution of linear systems of equations with recursive structure, Linear Algebra Appl.80, (1986) 81–113.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Gohberg andV. Olshevsky,Fast state space algorithms for matrix Nehari and Nehari-Takagi interpolation problems, Integral Equ. and Operator Theory20, 1, (1994) 44–83.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Golub andC. van Loan, Matrix Computations, John Hopkins, Baltimore, 1989.

    MATH  Google Scholar 

  17. M. Gutknecht,Stable row recurrences for the Padé table and generically superfast look-ahead solvers for non-Hermitian Toeplitz systems, Linear Algebra Appl.188/189, (1993) 351–422.

    Article  MathSciNet  Google Scholar 

  18. M. Gutknecht, M. Hochbruck,Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems, Technical Report 93-11, IPS, ETH Zürich, 1993.

    Google Scholar 

  19. G. Heinig,Inversion of generalized Cauchy matrices and other classes of structured matrices. In: Linear Algebra for Signal Processing, IMA Volumes in Math. and its Appl. vol.69, (1994) 95–114.

  20. G. Heinig,Inversion of Toeplitz-like matrices via generalized Cauchy matrices and rational interpolation. In: Systems and Network: Mathematical Theory and Applications, Akademie Verlag 1994, vol.2, 707–711.

  21. G. Heinig,Transformation approaches for fast and stable solutions of Toeplitz systems and polynomial equations, Proceedings of the International Workshop on the recent Advances of Applied Mathematics, Kuwait, May 1996, pp. 223–238.

  22. G. Heinig, A. Bojanczyk,Transformation techniques for structured matrices, I. Transformations, Linear Algebra Appl.254, (1997) 193–226;II. Algorithms, Linear Algebra Appl. (submitted), also Technical Report CTC96TR251, Cornell Theory Center, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Heinig, F. Al-Musallam,Lagrange's formula for tangential interpolation with application to structured matrices, Integral Equ. and Operator Theory (submitted).

  24. G. Heinig K. Rost, Algebraic methods for Toeplitz-like matrices and operators. Birkhäuser Verlag, Basel-Boston-Stuttgart 1984.

    MATH  Google Scholar 

  25. N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.

    MATH  Google Scholar 

  26. T. Kailath, V. Olshevsky,Symmetric and Bunch-Kaufmann pivoting for partially structured Cauchy-like matrices, with applications for Toeplitz-like linear equations, Linear Algebra Appl. (submitted).

  27. T. Kailath, A. Sayed,Fast algorithms for generalized displacement structures, In: Recent Advances in Mathematical Theory of Systems, Control, Network, and Signal Processing II, Proceedings of the MTNS-91 (H. Kimura, S. Kodama, Eds) Mita Press, Japan, 27–32, (1992).

    Google Scholar 

  28. T. Kailath, A. Sayed,Displacement structure: Theory and applications, SIAM Review37,3, (1995) 297–386.

    Article  MathSciNet  Google Scholar 

  29. Ming Gu,Stable and efficient algorithms for structured systems of linear equations, SIAM J. Matrix Analysis Appl. (to appear).

  30. G. Sansigre, M. Alvarez,On Bezoutian reduction with the Vandermonde matrix, Linear Altebra Appl.121, (1989) 401–408.

    Article  MATH  MathSciNet  Google Scholar 

  31. D. Sweet, R. Brent,Error analysis of a fast partial pivoting method for structured matrices. In T. Luk, (ed.) Advanced Signal Processing Algorithms, Proc. of SPIE, vol. 2363 (1995), 266–280.

  32. C. Van Loan, Computational framework for the Fast Fourier Transform, SIAM, Philadelphia, 1992.

    Google Scholar 

  33. J. Varah,The prolate matrix, Linear Algebra Appl.187, (1993) 269–278.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinig, G. Solving Toeplitz systems after extension and transformation. Calcolo 33, 115–129 (1996). https://doi.org/10.1007/BF02575712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575712

Keywords

Navigation