Skip to main content
Log in

Classical foundations of algorithms for solving positive definite Toeplitz equations

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

The ongoing development and analysis of efficient algorithms for solving positive definite Toeplitz equations is motivated to a large extent by the importance of these equations in signal processing applications. The role of positive definite Toeplitz matrices in this and other areas of mathematics and engineering stems from Schur's study of bounded analytic functions on the unit disk, and Szegő's theory of polynomials orthogonal on the unit circle. These ideas underlie several Toeplitz solvers, and provide a useful framework for understanding the relationships among these algorithms. In this paper we give an overview of several direct algorithms for solving positive definite Toeplitz systems of linear equations from this classical viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner, New York, 1965.

    MATH  Google Scholar 

  2. G. S. Ammar and P. Gader,New decompositions of the inverse of a Toeplitz matrix. In M. A. Kaashoek, J. H. van Schuppen, and A. C. N. Ran, editors, Signal Processing, Scattering and Operator Theory, and Numerical Methods, pages 421–428. Birkhäuser, 1990.

  3. G. S. Ammar andP. Gader,A variant of the Gohberg-Semencul formula involving circulant matrices, SIAM J. Matrix Anal. Appl.12, (1991) 534–540.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. S. Ammar andW. B. Gragg,Implementation and use of the generalized Schur algorithm. In C. I. Byrnes and A. Lindquist, editors, Computational and Combinatorial Methods in Systems Theory, pages 265–280. North-Holland, Amsterdam, 1986.

    Google Scholar 

  5. G. S. Ammar andW. B. Gragg,The generalized Schur algorithm for the superfast solution of Toeplitz systems. In J. Gilewicz, M. Pindor, and W. Siemaszko, editors, Rational Approximation and its Applications in Mathematics and Physics, number 1237 in Lecture Notes in Mathematics, pages 315–330. Springer-Verlag, Berlin, 1987.

    Chapter  Google Scholar 

  6. G. S. Ammar andW. B. Gragg,Superfast solution of real positive definite Toeplitz systems, SIAM J. Matrix Anal. Appl.9, (1988) 61–76.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. S. Ammar andW. B. Gragg,Numerical experience with a superfast real Toeplitz solver, Lin. Alg. Appl.121, (1989) 185–206.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. H. Bareiss,Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices, Numer. Math.13, (1969) 404–424.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. R. Bitmead andB. D. O. Anderson,Asymptotically fast solution of Toeplitz and related systems of linear equations, Lin. Alg. Appl.34, (1980) 103–116.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA, 1985.

    MATH  Google Scholar 

  11. A. W. Bojanczyk, R. P. Brent, F. R. D. Hoog, andD. R. Sweet,On the stability of the Bareiss and related Toeplitz factorization algorithms, SIAM J. Matrix Anal. Appl.16, (1995) 40–57.

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Bozzo,Algebras of higher dimension for displacement decompositions and computations with Toeplitz plus Hankel matrices, Lin. Alg. Appl.230, (1995) 127–150.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Bozzo andC. Di Fiore,On the use of certain matrix algebras associated with real discrete transforms in matrix displacement decomposition, SIAM J. Matrix Anal. Appl.16, (1995) 312–326.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. P. Brent, F. G. Gustavson, andD. Y. Y. Yun,Fast solution of Toeplitz systems of equations and computation of Padé approximants, J. Algorithms1, (1980) 259–295.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. de Hoog,A new algorithm for solving Toeplitz systems of equations, Lin. Alg. Appl.88/89, (1987) 123–138.

    Article  Google Scholar 

  16. C. Di Fiore andP. Zellini,Matrix decompositions using displacement rank and classes of commutative matrix algebras, Lin. Alg. Appl.229, (1995) 49–100.

    Article  MATH  Google Scholar 

  17. J. Durbin,The fitting of time-series models, Rev. Int. Inst. Statist.28, (1960) 233–243.

    Article  Google Scholar 

  18. B. Friedlander, M. Morf, T. Kailath, andL. Ljung,New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices, Lin. Alg. Appl.27, (1979) 31–60.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Gader,Displacement operator based decompositions of matrices using circulants or other group matrices, Lin. Alg. Appl.139, (1990), 111–131.

    Article  MATH  MathSciNet  Google Scholar 

  20. I. C. Gohberg andI. A. Fel'dman, Convolution Equations and Projection Methods for Their Solution, American Math. Soc., Providence, RI, 1974.

    MATH  Google Scholar 

  21. I. Gohberg, T. Kailath, I. Koltracht, andP. Lancaster,Linear complexity parallel algorithms for linear systems of equations with recursive structure, Lin. Alg. Appl.88/89, (1987) 271–315.

    Article  MathSciNet  Google Scholar 

  22. I. Gohberg, I. Koltracht, andD. Xiao,Condition and accuracy of algorithms for computing Schur coefficients of Toeplitz matrices, SIAM J. Matrix Anal. Appl.15, (1994) 1290–1309.

    Article  MATH  MathSciNet  Google Scholar 

  23. I. Gohberg andV. Olshevsky,Complexity of multiplication with vectors for structured matrices, Lin. Alg. Appl.202, (1994) 163–192.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, second edition, 1989.

  25. U. Grenander andG. Szegő, Toeplitz Forms and Their Applications, Chelsea, New York, second edition, 1984.

    MATH  Google Scholar 

  26. G. Heinig andK. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, Akademie-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  27. J. R. Jain,An efficient algorithm for a large Toeplitz set of linear equations, IEEE Trans. Acoust., Speech, Signal Proc.27, (1979) 612–615.

    Article  Google Scholar 

  28. T. Kailath,A theorem of I. Schur and its impact on modern signal processing. In I. Gohberg, editor, I. Schur Methods in Operator Theory and Signal Processing, pages 9–30, Birkhäuser Verlag, Boston, 1986.

    Google Scholar 

  29. T. Kailath andJ. Chun,Generalized displacement structure for block-Toeplitz, Toeplitz-block, and Toeplitz-derived matrices, SIAM J. Matrix Anal. Appl.15(1), (1994) 114–128.

    Article  MATH  MathSciNet  Google Scholar 

  30. T. Kailath, S.-Y. Kung andM. Morf,Displacement ranks of matrices and linear equations, J. Math. Anal. and Appl.68, (1979) 395–407.

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Kailath andA. H. Sayed,Displacement structure: Theory and applications, SIAM Review37, (1995) 297–386.

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Kailath, A. Vieira, andM. Morf,Inverses of Toeplitz operators, innovations, and orthogonal polynomials, SIAM Rev.20, (1978) 106–119.

    Article  MATH  MathSciNet  Google Scholar 

  33. N. Levinson,The Wiener RMS (root-mean-square) error criterion in filter design and prediction, J. Math. Phys.25, (1947) 261–278.

    MathSciNet  Google Scholar 

  34. B. R. Musicus,Levinson and fast Cholesky algorithms for Toeplitz and almost Toeplitz matrices, Technical report, Research Lab. of Electronics, M. I. T., 1984.

  35. I. Schur,Uber potenzreihen, die in Innern des Einheitkrises Beschränkt Sind, J. Reine Angew. Math.147, (1917) 205–232. English translation in: I. Schur Methods in Operator Theory and Signal Processing, I. Gohberg, ed., Birkhäuser, 1986, 31–89.

    Google Scholar 

  36. G. Szegő, Orthogonal Polynomials, American Math. Soc., Providence, 1939.

    Google Scholar 

  37. W. F. Trench,An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust. Appl. Math.12, (1964) 515–522.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammar, G.S. Classical foundations of algorithms for solving positive definite Toeplitz equations. Calcolo 33, 99–113 (1996). https://doi.org/10.1007/BF02575711

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575711

Keywords

Navigation