Skip to main content
Log in

Renormalization group in turbulence theory: Exactly solvable Heisenberg model

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

An exactly solvable Heisenberg model describing the spectral balance conditions for the energy of a turbulent liquid is investigated in the renormalization group (RG) framework. The model has RG symmetry with the exact RG functions (the β-function and the anomalous dimension γ) found in two different renormalization schemes. The solution to the RG equations coincides with the known exact solution of the Heisenberg model and is compared with the results from the ε expansion, which is the only tool for describing more complex models of developed turbulence (the formal small parameter ε of the RG expansion is introduced by replacing a δ-function-like pumping function in the random force correlator by a powerlike function). The results, which are valid for asymptotically small ε, can be extrapolated to the actual value ε=2, and the few first terms of the ε expansion already yield a reasonable numerical estimate for the Kolmogorov constant in the turbulence energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heisenberg,Z. Phys.,124, 628 (1948).

    Article  MATH  MathSciNet  Google Scholar 

  2. N. N. Bogoliubov and D. V. Shirkov,Introduction to the Theory of Quantum Fields [in Russian], (4th ed.), Nauka, Moscow (1984), English transl. prev ed.: Wiley, New York (1959).

    Google Scholar 

  3. D. V. Shirkov,Russ. Math. Surv.,49, 155 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Zinn-Justin,Quantum Field Theory and Critical Phenomena, Clarendon, Oxford (1989).

    Google Scholar 

  5. C. De Dominicis and P. C. Martin,Phys. Rev. A,19, 419 (1979).

    Article  ADS  Google Scholar 

  6. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev,Phys. Usp.,39, 1193 (1996).

    Article  Google Scholar 

  7. R. H. Kraichnan,Phys. Rev. A,25, 3281 (1982);Phys. Fluids,30, 2400 (1987).

    Article  ADS  Google Scholar 

  8. S. Chen and R. H. Kraichman,Phys. Fluids A,1, 2019 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. L. Woodruff,Phys. Fluids,6, 3051 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. S. H. Lam,Phys. Fluids A,4, 1007 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. G. L. Eyink,Phys. Fluids,6, 3063 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. É. V. Teodorovich,Fluid Dynamics, No. 4, 517 (1987);Sov. Phys. Dokl.,33, 247 (1988);Izv. Rossiisk. Akad. Nauk. Fiz. Atm. Okeana,29, 149 (1993).

    Google Scholar 

  13. L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev,JETP,68, 733 (1989); N. V. Antonov,J. Sov. Math.,54, 873 (1991).

    Google Scholar 

  14. N. V. Antonov, S. V. Borisenok, and V. I. Girina,Theor. Math. Phys.,107, 456 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  15. N. V. Antonov,J. Sov. Math.,62, 2950 (1992);Vestn. SPb. Gos. Univ., Fiz. Khim., No. 3, 3 (1992); L. Ts. Adzhemyan, N. V. Antonov, and T. L. Kim,Theor. Math. Phys.,100, 1086 (1994).

    Article  MathSciNet  Google Scholar 

  16. L. Ts. Adzhemyan, A. N. Vasil'ev, and Yu. M. Pis'mak,Theor. Math. Phys.,57, 1131 (1983); L. Ts. Adzhemyan. A. N. Vasil'ev, and M. Gnatich,Theor. Math. Phys.,74, 115 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  17. N. V. Antonov, S. V. Borisenok, and V. I. Girina,Theor. Math. Phys.,106, 75 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  18. N. V. Antonov and A. N. Vasil'ev,Theor. Math. Phys.,110, 97 (1997).

    MATH  MathSciNet  Google Scholar 

  19. M. Avellaneda and A. J. Majda,Commun. Math., Phys.,131, 381 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics [in Russian], Vol 2,Mechanics of Turbulence. Gidrometeoizdat, St. Petersburg (1996), English transl. prev. ed.: MIT Press, Cambridge (1975).

    Google Scholar 

  21. D. V. Shirkov,Dokl Akad. Nauk SSSR,263, 64 (1982);Theor. Math. Phys.,60, 778 (1984);Int. J. Mod. Phys.,A3, 1321 (1988).

    MathSciNet  Google Scholar 

  22. V. F. Kovalev, V. V. Pustovalov, and D. V. Shirkov, “Group analysis and renormalization group [in Russian],” Preprint JINR P5-95-447. Joint Institute for Nuclear Research, Dubna (1995).

    Google Scholar 

  23. N. Goldenfeld, O. Martin, Y. Oono, and F. Liu,Phys. Rev. Lett.,64, 1361 (1990); N. Goldenfeld, O. Martin, and Y. Oono,J. Sci. Comp.,4, 355 (1990).

    Article  ADS  Google Scholar 

  24. W. D. McComb,The Physics of Fluid Turbulence, Clarendon, Oxford (1990).

    Google Scholar 

  25. J. Collins,Renormalization. An Introduction to Renormalization, the Renormalization Group, and the Operator-Product Expansion, Cambridge Univ., New Rochelle-Melbourne (1984).

    MATH  Google Scholar 

  26. V. Yakhot and S. A. Orszag,Phys. Rev. Lett.,57, 1722 (1986);J. Sci. Comput.,1, 3 (1986).

    Article  ADS  Google Scholar 

  27. W. P. Dannevik, V. Yakhot, and S. A. Orszag,Phys. Fluids,30, 2021 (1987).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika. Vol. 115, No. 2, pp. 245–262 May. 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adzhemyan, L.T., Antonov, N.V. Renormalization group in turbulence theory: Exactly solvable Heisenberg model. Theor Math Phys 115, 562–574 (1998). https://doi.org/10.1007/BF02575456

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575456

Keywords

Navigation