Skip to main content
Log in

Simulation of a glass transition in a hot-wire experiment using time-dependent heat capacity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The transient hot-wire method is used for simultaneous measurements of the thermal conductivity λ and the heat capacity per unit volumepc p and yields a peak in λ and a dip inpc p near a glass transition. Through simulations, it is shown that these anomalous results arise due to a time dependence inc p , which is described by a fractional exponential function:c p (t)=c p (liquid)+[c p (glass)-c p (liquid)c -(t,τ)β], where τ is the heat capacity relaxation time and β is a sample dependent parameter (0<β≤1). By a comparison with experimental data for cyclohexanol and glycerol, it is demonstrated that this model can be used to reproduce the peak and the dip as well as the temperature at which these occur. In addition, it is shown that the maximum in λ occurs at τ-0.3 s, whereas τ of the minimum inpc p is dependent on β and moves from 0.4 to 1 s for a change in β from 1 to 0.5. The difference in τ between the peak and the dip is in agreement with the experimental results. It is concluded that the anomalies reveal glass forming characteristics such as a rough classification in terms of strong and fragile glass formers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Götze and L. Sjögren,Rep. Prog. Phys. 55:241 (1992).

    Article  Google Scholar 

  2. E. Donth,J. Non-Cryst. Solids 53:325 (1982).

    Article  Google Scholar 

  3. A. Hensel, J. Dobbertin, J. E. K. Schawe, A. Boller, and C. Schick,J. Thermal. Anal. 46:935 (1996).

    Article  Google Scholar 

  4. N. O. Birge,Phys. Rev. B 34:1631 (1986).

    Article  ADS  Google Scholar 

  5. Y. H. Jeong and I. K. Moon,Phys. Rev. B 52:6381 (1995).

    Article  ADS  Google Scholar 

  6. J. J. Healy, J. J. de Groot, and J. Kestin,Physica 82C:392 (1976).

    Google Scholar 

  7. P. Andersson and G. Bäckström,Rev. Sci. Instrum. 47:205 (1976).

    Article  ADS  Google Scholar 

  8. B. Hakansson, P. Andersson and G. Bäckström,Rev. Sci. Instrum 59:2269 (1988).

    Article  ADS  Google Scholar 

  9. H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids, 2nd ed. (Clarendon Press, Oxford, 1959), pp. 341–344.

    Google Scholar 

  10. O. Sandberg, P. Andersson, and G. Bäckström, inProc. 7th Symp. Thermophys. Prop., A. Cezairliyan, ed. (ASME, New York, 1977), pp. 181–184.

    Google Scholar 

  11. O. Sandberg and G. Bäckström,J. Polym. Sci. 18:2123 (1980).

    Google Scholar 

  12. O. Sandberg and B. Sundqvist,J. Appl. Phys. 53:8751 (1982).

    Article  ADS  Google Scholar 

  13. O. Andersson, R. G. Ross, and G. Bäckström,Mol. Phys. 66:619 (1989).

    Article  Google Scholar 

  14. G. Bäckström,Fields of Physics on the PC by Finite Element Analysis (Studentlitteratur, Lund, 1994).

    Google Scholar 

  15. O. Andersson, Ph.D. thesis (Umea University, Umea, 1991).

  16. O. Andersson, A. Soldatov, and B. Sundqvist,Phys. Lett. A 206:260 (1995).

    Article  ADS  Google Scholar 

  17. K. Adachi, H. Suga, S. Seki, S. Kubota, S. Yamaguchi, O. Yano, and Y. Wada,Mol. Cryst. Liq. Cryst. 18:345 (1972).

    Google Scholar 

  18. D. L. Leslie-Pelecky and N. O. Birge,Phys. Rev. Lett. 72:1232 (1994).

    Article  ADS  Google Scholar 

  19. C. A. Angell,J. Non-Cryst. Solids 131–133:13 (1991).

    Article  Google Scholar 

  20. S. R. Elliott,Physics of Amorphous Materials, 2nd ed (Longman Group UK Ltd., Hong Kong, 1990).

    Google Scholar 

  21. B. Wunderlich,J. Phys. Chem. 64:1052 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, O. Simulation of a glass transition in a hot-wire experiment using time-dependent heat capacity. Int J Thermophys 18, 195–208 (1997). https://doi.org/10.1007/BF02575207

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575207

Key Words

Navigation