Skip to main content
Log in

Subatmospheric vapor pressures evaluated from internal-energy measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Vapor pressures were evaluated from measured internal-energy changes in the vapor+liquid two-phase region, ΔU (2). The method employed a thermodynamic relationship between the derivative quantity (ϖU (2)V) T and the vapor pressure (p σ) and its temperature derivative (ϖpT)σ. This method was applied at temperatures between the triple point and the normal boiling point of three substances: 1,1,1,2-tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane (R32). Agreement with experimentally measured vapor pressures near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately ±0.04 kPa (±0.04%). The method was applied to R134a to test the thermodynamic consistency of a publishedp-p-T equation of state with an equation forp σ for this substance. It was also applied to evaluate publishedp σ data which are in disagreement by more than their claimed uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C σ :

Saturated liquid heat capacity

C tD v :

Isochoric heat capacity of the ideal gas

M :

Molecular weight

p σ :

Vapor pressure

QT:

Amount of energy needed to change the temperature of the sample by 1 K

ρ:

Density

T :

Temperature

τ:

1−T/T c

′:

Saturated liquid

″:

Saturated vapor

(2):

≡{m 1 X′+m g X″}/{m 1+m g }, bulk propertyX (2) in the two-phase region for a specific propertyX, wherem 1 andm g are, respectively, the masses of the liquid and gas

ΔVAP :

Change due to vaporization

ν:

Constant volume (isochoric)

T :

Constant temperature (isothermal)

C:

Critical property

σ:

Saturation property

References

  1. D. Ambrose and R. H. Davies,J. Chem. Thermodynam. 12:871 (1980).

    Article  Google Scholar 

  2. V. Majer, V. Svoboda, and J. Pick,Heats of Vaporization of Fluids (Elsevier, New York, 1989).

    Google Scholar 

  3. M. O. McLinden, private communication (NIST, Boulder, CO, 1995).

  4. B. A. Younglove and M. O. McLinden,J. Phys. Chem. Ref. Data 23:731 (1994).

    Article  ADS  Google Scholar 

  5. R. Tillner-Roth,Int. J. Thermophys. (1996), in press.

  6. L. A. Weber,Int. J. Refrig. 17:117 (1992).

    Article  Google Scholar 

  7. M. L. Huber and M. O. McLinden,Proc. Int. Refrig. Conf., Purdue University, Lafayette, IN (1992), p. 453.

  8. J. W. Magee,J. Res. Natl. Inst. Stand. Technol. 96:725 (1991).

    Google Scholar 

  9. C. N. Yang and C. P. Yang,Phys. Rev. Lett. 13:303 (1964).

    Article  ADS  Google Scholar 

  10. J. W. Magee,Int. J. Refrig. 15:372 (1992).

    Article  Google Scholar 

  11. R. Tillner-Roth and H. D. Baehr,J. Phys. Chem. Ref. Data 23:657 (1994).

    Article  ADS  Google Scholar 

  12. P. T. Boggs, R. H. Byrd, J. E., Rogers, and R. B. Schnabel,NISTIR 4834 User’s Reference Guide for ODRPACK Version 2.01, Software for Weighted Orthogonal Distance Regression (NIST, Gaithersburg, MD, 1992).

    Google Scholar 

  13. S. L. Outcalt and M. O. McLinden,Int. J. Thermophys. 16:79 (1995).

    Article  Google Scholar 

  14. T. O. Lüddecke and J. W. MageeInt. J. Thermophys. 17:823 (1996).

    Article  Google Scholar 

  15. J. W. Magee and J. B. Howley,Int. J. Refrig. 15:362 (1992).

    Article  Google Scholar 

  16. A. R. H. Goodwin, D. R. Defibaugh, and L. A. Weber,Int. J. Thermophys. 13:837 (1992).

    Article  Google Scholar 

  17. J. W. Magee,Int. J. Thermophys. 17:803 (1996).

    Article  Google Scholar 

  18. L. A. Weber and A. M. Silva,J. Chem. Eng. Data 39:808 (1994).

    Article  Google Scholar 

  19. L. A. Weber and A. R. H. Goodwin,J. Chem. Eng. Data 38:254 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte-Garza, H.A., Magee, J.W. Subatmospheric vapor pressures evaluated from internal-energy measurements. Int J Thermophys 18, 173–193 (1997). https://doi.org/10.1007/BF02575206

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575206

Key Words

Navigation