Skip to main content
Log in

Pulse velocities in cylindrical, tapered and curved anisotropic elastic arteries

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Modified Moens-Korteweg formulae have been developed for the pulse velocities in anisotropic elastic arteries of varying geometries. In particular, cylindrical straight, tapered and curved tubes have been considered. Numerical results indicate that the cylindrical tube formula can be applied in all cases and that the circumferential elastic modulus is the dominant elastic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Apter, J. T., E. Marquez and M. Janas. 1970. “Dynamic Viscoelastic Anisotropy of Canine Aorta Correlated with Aortic Wall Composition”J. Assoc. Adv. Med. Instr.,4, 15–22.

    Google Scholar 

  • Atabek, H. B. 1968. “Wave Propagation through a Viscous Fluid Contained in a Tethered Initially Stressed Orthotropic Elastic Tube.”Biophys. J.,5, 626–649.

    Google Scholar 

  • Attinger, F. M. L. 1964. “Some Problems Concerning the Analysis of the Mechanical Properties of the Blood Vessel Wall”. Ph.D. Thesis, University of Pennsylvania.

  • Bergel, D. H. 1961. “Dynamic Elastic Properties of the Arterial Wall”J. Physiol.,156, 458–469.

    Google Scholar 

  • Cerny, L. C. and W. P. Walawender. 1966. “The Flow of a Viscous Liquid in a Converging Tube”.Bull. Math. Biophysics,28, 11–24.

    Article  MATH  Google Scholar 

  • Dean, W. R. 1927. “Note on the Motion of Fluid in a Curved Pipe”Phil. Mag.,4, 208–223.

    Google Scholar 

  • — 1939. “The Distortion of a Curved Tube due to Internal Pressure”. —Ibid.,28, 452–464.

    MATH  MathSciNet  Google Scholar 

  • Dobrin, P. B. and J. M. Doyle. 1970. “Vascular Smooth Muscle and the Anisotropy of Dog Carotid Artery”Circ. Res.,27, 105–119.

    Google Scholar 

  • Fenn, W. O. 1957. “Changes in Length of Blood Vessels on Inflation”. InTissue Elasticity. J. Remington (ed.). pp. 154–167. Amer. Physiol. Soc.

  • Flugge, W.. 1966.Stresses in Shells. New York: Springer-Verlag.

    Google Scholar 

  • Fry, D. L., D. M. Griggs and J. C. Greenfield, Jr.. 1964. “In Vivo Studies of Pulsatile Blood Flow. The Relationship of the Pressure Gradient to the Blood Velocity” InPulsatile Blood Flow. E. O. Attinger, ed. New York: McGraw-Hill.

    Google Scholar 

  • Fujiki, T. and S. Oka. 1965. “Pulsatile Flow of a Viscous Fluid in a Tapered Tube”.Reports on progress in Polymer Physics in Japan,8, 163–166.

    Google Scholar 

  • Jordan, P. F. 1962. “Stresses and Deformations of the Thin Wall Pressurized Torous”.J. Aerospace Sc.,29, 213–225.

    Google Scholar 

  • Lambossy, P. 1967. L’anisotropie des arteres.Angiologica,4, 129.

    Google Scholar 

  • — and A. Müller. 1954. “Vitesse des ondes dans les tubes. Influence de l’anisotropie de la paroi”.Helv. Physiol. et Pharmacol. Acta,12, 217.

    Google Scholar 

  • Lekhnitski, S. G. 1963.Theory of Elasticity of an Anisotropic Elastic Body. San Francisco: Holden-Day.

    Google Scholar 

  • Love, A. E. H. 1944. InA Treatise on the Mathematical Theory of Elasticity, p. 53, 4th edn. New York: Dover Publications.

    MATH  Google Scholar 

  • McConalogue, D. J. and R. S. Srivastava. 1968. “Motion of a Fluid in a Curved Tube”.Proc. Roy. Soc. A.,307, 37–53.

    MATH  Google Scholar 

  • McDonald, D. A. 1968. “Hemodynamics”Ann. Rev. Physiol.,30, 525–556.

    Article  Google Scholar 

  • Mirsky, I. 1964. “Vibrations of Orthotropic Thick Cylindrical Shells”J. Acoust. Soc. Am.,36, 41–51.

    Article  MathSciNet  Google Scholar 

  • — 1967a. “Wave Propagation in a viscous Fluid contained in an Orthotropic Elastic Tube”Biophys. J.,7, 165–186.

    Article  Google Scholar 

  • — 1967b. “Pulse Velocities in an Orthotropic Elastic Tube”.Bull. Math. Biophysics,29, 311–318.

    Article  Google Scholar 

  • —. 1968. “Pulse Velocities in Initially Stressed Cylindrical Rubber Tubes”. —Ibid.,30, 299–308.

    Article  MATH  Google Scholar 

  • — 1970. “Effects of Anisotropy and Nonhomogeneity on Left Ventricular Stresses in the Intact Heart”. —Ibid.32, 197–213.

    Article  Google Scholar 

  • Murthy, V. S., T. A. McMahon, M. Y. Jaffrin and A. H. Shapiro. 1971. “The Intra Aortic Balloon for Left Heart Assistance. An Analytic Model.J. Biomechanics,4, 351–369.

    Article  Google Scholar 

  • Naghdi, P. M., 1957. “On the Theory of Thin Elastic Shells”.Quart. Appl. Math.,14, 369–380.

    MATH  MathSciNet  Google Scholar 

  • Patel, D. J., J. S. Janicki and T. E. Carew. 1969. “Static Anisotropic Elastic Properties of the Aorta in Living Dogs”Circ. Res.,25, 765–779.

    Google Scholar 

  • Reissner, E. 1950. “On a Variational Theorem in Elasticity”J. Math. Phys.,29, 90–95.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirsky, I. Pulse velocities in cylindrical, tapered and curved anisotropic elastic arteries. Bltn Mathcal Biology 35, 495–511 (1973). https://doi.org/10.1007/BF02575193

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575193

Keywords

Navigation