[B] E. K. Babson: A Combinatorial Flag Space, Ph.D. Thesis, MIT, 1993.
[BKS] L. J. Billera, M. M. Kapranov, and B. Sturmfels: Cellular strings on polytopes,Proc. Amer. Math. Soc., to appear.
[BLS+] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler:Oriented Matroids, Encyclopedia of Mathematics and Its Applications, Vol. 46, Cambridge University Press, Cambridge, 1993.
MATH
Google Scholar
[BZ] A. Björner and G. M. Ziegler: Combinatorial stratification of complex arrangements,J. Amer. Math. Soc.
5 (1992), 105–149.
MATH
MathSciNet
Article
Google Scholar
[D1] A. W. M. Dress: Duality theory for finite and infinite matroids with coefficients,Adv. in Math.
59 (1986), 97–123.
MATH
MathSciNet
Article
Google Scholar
[D2] A. W. M. Dress: Personal communication, Djursholm, 1992.
[DW1] A. W. M. Dress and W. Wenzel: Endliche Matroide mit Koeffizienten,Bayreuth. Math. Schr.
26 (1988), 37–98.
MATH
MathSciNet
Google Scholar
[DW2] A. W. M. Dress and W. Wenzel: Grassmann-Plücker relations and matroids with coefficients,Adv. in Math.
86 (1991), 68–110.
MATH
MathSciNet
Article
Google Scholar
[DW3] A. W. M. Dress and W. Wenzel: Perfect matroids,Adv. in Math.
91 (1992), 158–208.
MATH
MathSciNet
Article
Google Scholar
[EM] J. Edmonds and A. Mandel: Topology of Oriented Matroids, Ph.D. Thesis of A. Mandel, University of Waterloo, 1982.
[FL] J. Folkman and J. Lawrence: Oriented matroids,J. Combin. Theory Ser. B
25 (1978), 199–236.
MATH
MathSciNet
Article
Google Scholar
[GeM] I. M. Gel'fand and R. D. MacPherson: A combinatorial formula for the Pontrjagin classes,Bull. Amer. Math. Soc.
26 (1992), 304–309.
MathSciNet
Article
Google Scholar
[GeR] I. M. Gel'fand and G. L. Rybnikov: Algebraic and topological invariants of oriented matroids,Soviet Math. Dokl.
40 (1990), 148–152.
MATH
MathSciNet
Google Scholar
[GoM] M. Goresky and R. MacPherson:Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, vol. 14, Springer-Verlag, Berlin, 1988.
MATH
Book
Google Scholar
[K] J. Karlander: A characterization of affine sign vector systems, Preprint, KTH, Stockholm, 1992.
Google Scholar
[LV] M. Las Vergnas: Oriented matroids as signed geometries real in corank 2, in:Finite and Infinite Sets (Proc. 6th Hungarian Combinatorial Conf., Eger, 1981), North-Holland, Amsterdam, 1984, pp. 555–565.
Google Scholar
[MP] R. D. MacPherson: Combinatorial differential manifolds, Preprint, 1992.
[MZ] N. E. Mnëv and G. M. Ziegler: Combinatorial models for the finite-dimensional Grassmannians,Discrete Comput. Geom., this issue, pp. 241–250.
[OS] P. Orlik and L. Solomon: Combinatorics and topology of complements of hyperplanes,Invent. Math.
56 (1980), 167–189.
MATH
MathSciNet
Article
Google Scholar
[R] G. L. Rybnikov: Personal communication, Luminy, 1991.
[S] M. Salvetti: Topology of the complement of real hyperplanes in ℂN,Invent. Math.
88 (1987), 603–618.
MATH
MathSciNet
Article
Google Scholar
[SW] J. Stoer and Ch. Witzgall:Convexity and Optimization in Finite Dimensions I, Grundlehren der Mathematischen Wissenschaften, vol. 163, Springer-Verlag, Berlin, 1970.
Book
Google Scholar
[SZ] B. Sturmfels and G. M. Ziegler: Extension spaces of oriented matroids,Discrete Comput. Geom.
10 (1993), 23–45.
MATH
MathSciNet
Article
Google Scholar
[Z] G. M. Ziegler: On the difference between real and complex arrangements,Math. Z.
212 (1993), 1–11.
MATH
MathSciNet
Article
Google Scholar
[ZŽ] G. M. Ziegler and R. T. Živaljević: Homotopy types of arrangements via diagrams of spaces,Math. Ann.
295 (1993), 527–548.
MATH
MathSciNet
Article
Google Scholar