Abstract
We study the space of all extensions of a real hyperplane arrangement by a new pseudohyperplane, and, more generally, of an oriented matroid by a new element. The question whether this space has the homotopy type of a sphere is a special case of the “Generalized Baues Problem” of Billera, Kapranov, and Sturmfels, via the Bohne-Dress theorem on zonotopal tilings.
We prove that the extension space is spherical for the class of strongly euclidean oriented matroids. This class includes the alternating matroids and all oriented matroids of rank at most 3 or of corank at most 2. In general it is not known whether the extension space is connected for all realizable oriented matroids (hyperplane arrangements). We show that the subspace of realizable extensions is always connected but not necessarily spherical. Nonrealizable oriented matroids of rank 4 with disconnected extension spaces were recently constructed by Mnëv and Richter-Gebert.
Article PDF
References
E. K. Babson: A combinatorial flag space, Ph.D. Thesis, MIT, 1993.
A. Bachem and W. Kern: Adjoints of oriented matroids,Combinatorica 6 (1986), 299–308.
L. J. Billera, M. M. Kapranov, and B. Sturmfels: Cellular strings on polytopes, preprint, 1991.
L. J. Billera and B. Sturmfels: Fiber polytopes,Ann. of Math. 135 (1992), 527–549.
A. Björner: Topological methods, in:Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), North-Holland, Amsterdam, to appear.
A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler:Oriented Matroids, Cambridge University Press, Cambridge, 1993.
J. Bohne and A. Dress: Penrose tilings and oriented matroids, in preparation.
J. Bokowski and J. Richter-Gebert: On the classification of non-realizable oriented matroids. Part I: Generation, Part II: Properties, preprints, 1990.
J. Edmonds and K. Fukuda: Oriented matroid programming, Ph.D. Thesis of K. Fukuda, University of Waterloo, 1982.
J. Edmonds and A. Mandel: Topology of oriented matroids, Ph.D. Thesis of A. Mandel, University of Waterloo, 1982.
J. Folkman and J. Lawrence: Oriented matroids,J. Combin. Theory Ser. B 25 (1978) 199–236.
K. Fukuda and A. Tamura: Local deformation and orientation transformation in oriented matroids, I, II, Ars Combin.25A, 243–258; and preprint (Research Reports on Information Sciences B-212, Tokyo Institute of Technology), 1988.
I. M. Gelfand and R. D. MacPherson: A combinatorial formula for the Pontrjagin classes,Bull. Amer. Math. Soc. 26 (1992), 304–309.
B. Grünbaum:Convex Polytopes, Interscience, London, 1967.
M. M. Kapranov and V. A. Voevodsky: Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results),Cahiers Topologie Géom. Différentielle 32 (1991), 11–28.
M. Las Vergnas: Extensions ponctuelles d'une géométrie combinatoire orientée, in:Problémes combinatoires et théorie des graphes (Actes Coll., Orsay, 1976), Colloques internationaux, C.N.R.S., No. 260 (1978), pp. 265–270.
F. Levi: Die Teilung der projektiven Ebene durch Geraden oder Pseudogeraden,Ber. Math.-Phys. Kl. Sächs. Akad. Wiss.,78 (1926), 256–267.
Y. I. Manin and V. V. Schechtman: Arrangements of hyperplanes, higher braid groups and higher Bruhat orders,Adv. Studies in Pure Math. 17 (1989), 289–308.
N. E. Mnëv and J. Richter-Gebert: Two Constructions of Oriented Matroids with Disconnected Extension Space,Discrete Comput. Geom., to appear.
N. E. Mnëv and G. M. Ziegler: Combinatorial Models for the Finite-Dimensional Grassmannians,Discrete Comput. Geom., to appear.
D. Quillen: Higher Algebraic K-Theory: I, in:Higher K-Theories (H. Bass, ed.), Lecture Notes in Mathematics, Vol. 341, Springer-Verlag, Berlin, 1973, pp. 85–147.
J. Richter-Gebert: Euclideanness and Final Polynomials in Oriented Matroid Theory, Report No. 12 (1991/92), Institut Mittag-Leffler, 1991;Combinatorica, to appear.
P. Y. Suvorov: Isotopic but not rigidly isotopic plane systems of straight lines, in:Topology and Geometry-Rohlin Seminar (O. Ya Viro, ed), Lecture Notes in Mathematics, Vol. 1346, Springer-Verlag, Heidelberg, 1988, pp. 545–556.
G. M. Ziegler: Higher Bruhat orders and cyclic hyperplane arrangements,Topology, in press.
Author information
Authors and Affiliations
Additional information
This research was supported by the DFG Schwerpunkt at Augsburg and by the ARO through MSI Cornell (DAAG29-85-C-0018). The first author acknowledges partial support by the NSF (DMS-9002056).
Rights and permissions
About this article
Cite this article
Sturmfels, B., Ziegler, G.M. Extension spaces of oriented matroids. Discrete Comput Geom 10, 23–45 (1993). https://doi.org/10.1007/BF02573961
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02573961