Skip to main content

Extension spaces of oriented matroids

Abstract

We study the space of all extensions of a real hyperplane arrangement by a new pseudohyperplane, and, more generally, of an oriented matroid by a new element. The question whether this space has the homotopy type of a sphere is a special case of the “Generalized Baues Problem” of Billera, Kapranov, and Sturmfels, via the Bohne-Dress theorem on zonotopal tilings.

We prove that the extension space is spherical for the class of strongly euclidean oriented matroids. This class includes the alternating matroids and all oriented matroids of rank at most 3 or of corank at most 2. In general it is not known whether the extension space is connected for all realizable oriented matroids (hyperplane arrangements). We show that the subspace of realizable extensions is always connected but not necessarily spherical. Nonrealizable oriented matroids of rank 4 with disconnected extension spaces were recently constructed by Mnëv and Richter-Gebert.

References

  1. 1.

    E. K. Babson: A combinatorial flag space, Ph.D. Thesis, MIT, 1993.

  2. 2.

    A. Bachem and W. Kern: Adjoints of oriented matroids,Combinatorica 6 (1986), 299–308.

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    L. J. Billera, M. M. Kapranov, and B. Sturmfels: Cellular strings on polytopes, preprint, 1991.

  4. 4.

    L. J. Billera and B. Sturmfels: Fiber polytopes,Ann. of Math. 135 (1992), 527–549.

    MathSciNet  Article  Google Scholar 

  5. 5.

    A. Björner: Topological methods, in:Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), North-Holland, Amsterdam, to appear.

  6. 6.

    A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler:Oriented Matroids, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  7. 7.

    J. Bohne and A. Dress: Penrose tilings and oriented matroids, in preparation.

  8. 8.

    J. Bokowski and J. Richter-Gebert: On the classification of non-realizable oriented matroids. Part I: Generation, Part II: Properties, preprints, 1990.

  9. 9.

    J. Edmonds and K. Fukuda: Oriented matroid programming, Ph.D. Thesis of K. Fukuda, University of Waterloo, 1982.

  10. 10.

    J. Edmonds and A. Mandel: Topology of oriented matroids, Ph.D. Thesis of A. Mandel, University of Waterloo, 1982.

  11. 11.

    J. Folkman and J. Lawrence: Oriented matroids,J. Combin. Theory Ser. B 25 (1978) 199–236.

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    K. Fukuda and A. Tamura: Local deformation and orientation transformation in oriented matroids, I, II, Ars Combin.25A, 243–258; and preprint (Research Reports on Information Sciences B-212, Tokyo Institute of Technology), 1988.

  13. 13.

    I. M. Gelfand and R. D. MacPherson: A combinatorial formula for the Pontrjagin classes,Bull. Amer. Math. Soc. 26 (1992), 304–309.

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    B. Grünbaum:Convex Polytopes, Interscience, London, 1967.

    MATH  Google Scholar 

  15. 15.

    M. M. Kapranov and V. A. Voevodsky: Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results),Cahiers Topologie Géom. Différentielle 32 (1991), 11–28.

    MathSciNet  MATH  Google Scholar 

  16. 16.

    M. Las Vergnas: Extensions ponctuelles d'une géométrie combinatoire orientée, in:Problémes combinatoires et théorie des graphes (Actes Coll., Orsay, 1976), Colloques internationaux, C.N.R.S., No. 260 (1978), pp. 265–270.

  17. 17.

    F. Levi: Die Teilung der projektiven Ebene durch Geraden oder Pseudogeraden,Ber. Math.-Phys. Kl. Sächs. Akad. Wiss.,78 (1926), 256–267.

    Google Scholar 

  18. 18.

    Y. I. Manin and V. V. Schechtman: Arrangements of hyperplanes, higher braid groups and higher Bruhat orders,Adv. Studies in Pure Math. 17 (1989), 289–308.

    MathSciNet  Google Scholar 

  19. 19.

    N. E. Mnëv and J. Richter-Gebert: Two Constructions of Oriented Matroids with Disconnected Extension Space,Discrete Comput. Geom., to appear.

  20. 20.

    N. E. Mnëv and G. M. Ziegler: Combinatorial Models for the Finite-Dimensional Grassmannians,Discrete Comput. Geom., to appear.

  21. 21.

    D. Quillen: Higher Algebraic K-Theory: I, in:Higher K-Theories (H. Bass, ed.), Lecture Notes in Mathematics, Vol. 341, Springer-Verlag, Berlin, 1973, pp. 85–147.

    Chapter  Google Scholar 

  22. 22.

    J. Richter-Gebert: Euclideanness and Final Polynomials in Oriented Matroid Theory, Report No. 12 (1991/92), Institut Mittag-Leffler, 1991;Combinatorica, to appear.

  23. 23.

    P. Y. Suvorov: Isotopic but not rigidly isotopic plane systems of straight lines, in:Topology and Geometry-Rohlin Seminar (O. Ya Viro, ed), Lecture Notes in Mathematics, Vol. 1346, Springer-Verlag, Heidelberg, 1988, pp. 545–556.

    Chapter  Google Scholar 

  24. 24.

    G. M. Ziegler: Higher Bruhat orders and cyclic hyperplane arrangements,Topology, in press.

Download references

Author information

Affiliations

Authors

Additional information

This research was supported by the DFG Schwerpunkt at Augsburg and by the ARO through MSI Cornell (DAAG29-85-C-0018). The first author acknowledges partial support by the NSF (DMS-9002056).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sturmfels, B., Ziegler, G.M. Extension spaces of oriented matroids. Discrete Comput Geom 10, 23–45 (1993). https://doi.org/10.1007/BF02573961

Download citation

Keywords

  • Homotopy Type
  • Order Ideal
  • Strong Component
  • Hyperplane Arrangement
  • Extension Space