Skip to main content

Advertisement

Log in

Mature CD83+ dendritic cells infected with recombinant gp 100 vaccinia virus stimulate potent antimelanoma T cells

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Mature dendritics cells (DCs) are potent antigen-presenting cells that activate naive T lymphocytes and initiate cellular immune responses. The ability of CD83+ mature DCs infected with vaccinia virus encoding the gp 100 melanoma transgene (rV-gp 100) to stimulate an antimelanoma CD8+ T-cell response was investigated.

Methods

Monocyte-derived immature or CD83+ mature DCs were infected with rV-gp100. The activation state of the DCs and the expression of gp 100 protein were evaluated by flow cytometry. The reactivity of antimelanoma CD8+ T cells was confirmed by measuring specific interferon γ secretion by using enzyme-linked immunosorbent assay in a mixed-tumor lymphocyte culture.

Results

Both immature and CD83+ mature DCs expressed gp 100 protein when the DCs were infected with rV-gp 100. Calcium-signaling agents were required to induce maturation of both infected and nonifected immature DCs. Only rV-gp100-infected CD83+ DCs induced CD8+ T cells, after a single stimulation that recognized both peptide-pulsed target cells to multiple gp 100 epitopes and a melanoma cell line that endogenously expressed gp 100 antigen.

Conclusions

CD83+ DCs transduced with rV-gp 100 are capable of generating a strong CD8+ T-cell response against melanoma tumor cells. Expression of melanoma antigens by mature DCs offers the potential advantage of presenting multiple endogenously processed T-cells epitopes and using multiple HLA restriction elements for antimelanoma vaccine therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution.J Exp Med 1973;137:1142–62.

    Article  PubMed  CAS  Google Scholar 

  2. Steinman RM. The dendritic cell system and its role in immunogenicity.Annu Rev Immunol 1991;9:271–96.

    Article  PubMed  CAS  Google Scholar 

  3. Matzinger P. Tolerance, danger and the extended family.Annu Rev Immunol 1994;12:991–1045.

    PubMed  CAS  Google Scholar 

  4. Paglia P, Chiodini C, Rodolfo M, Colombo MP. Murine dendritic cells loadedin vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigenin vivo.J Exp Med 1996;183:317–22.

    Article  PubMed  CAS  Google Scholar 

  5. Grabbe S, Bruvers S, Gallo RL, Knisely R, Nazareno R, Granstein RD. Tumor antigen presentation by murine epidermal cells.J Immunol 1991;146:3656–66.

    PubMed  CAS  Google Scholar 

  6. Porgador A, Gilboa E. Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes.J Exp Med 1995;182:255–61.

    Article  PubMed  CAS  Google Scholar 

  7. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with cell-dendritic cell hybrids.Nat Med 2000;6:332–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ashley DM, Faiola B, Nair S, Bigner LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce anti-tumor immunity against central nervous system tumors.J Exp Med 1997;186:1177–82.

    Article  PubMed  CAS  Google Scholar 

  9. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD Jr. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity.J Exp Med 1996;183:283–90.

    Article  PubMed  CAS  Google Scholar 

  10. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.Nat Med 1998;4:328–36.

    Article  PubMed  CAS  Google Scholar 

  11. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunological and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma.Nat Med 1998;4:321–7.

    Article  PubMed  CAS  Google Scholar 

  12. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.Nat Med 1996;2:52–8.

    Article  PubMed  CAS  Google Scholar 

  13. Salgaller M, Tjoa B, Lodge P, et al. Dendritic cell-based immunotherapy of prostate cancer.Crit Rev Immunol 1998;18:109–19.

    PubMed  CAS  Google Scholar 

  14. Morse M, Deng Y, Coleman D, et al. A phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen.Clin Cancer Res 1999;5:1331–8.

    PubMed  CAS  Google Scholar 

  15. Titzer S, Christensen O, Manzke O, et al. Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects.Br J Haematol 2000;108:805–16.

    Article  PubMed  CAS  Google Scholar 

  16. Schuler-Thurner B, Dieckmann D, Keikavoussi P, et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.I+ melanoma patients by mature monocyte-derived dendritic cells.J Immunol 2000;165:3492–6.

    PubMed  CAS  Google Scholar 

  17. Mackensen A, Herbst B, Chen J, et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generatedin vitro from CD34+ hematopoietic progenitor cells.Int J Cancer 2000;86:385–92.

    Article  PubMed  CAS  Google Scholar 

  18. Dhodapkar M, Steinman R, Krasousky J, Munz T, Bhardwai N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells.J Exp Med 2001;193:233–40.

    Article  PubMed  CAS  Google Scholar 

  19. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavechia A, Alber G. Ligation of CD40 on dendritic cell triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation.J Exp Med 1996;184:747–52.

    Article  PubMed  CAS  Google Scholar 

  20. Sallusto F, Lanzavecchia A. Efficient presentations of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.J Exp Med 1994; 179:1109–18.

    Article  PubMed  CAS  Google Scholar 

  21. Czerniecki B, Carter C, Rivoltini L, et al. Calcium ionophoretreated peripheral blood monocyte and dendritic cells rapidly display characteristics of activated dendritic cells.J Immunol 1997; 159:3823–37.

    PubMed  CAS  Google Scholar 

  22. Bedrosan I, Roros JG, Xu S, et al. Granulocyte-macrophage colony stimulating factor, interleukin-2, and interleukin-12 synergize with calcium ionophore to enhance dendritic cell function.J Immunother 2000;23:311–20.

    Article  Google Scholar 

  23. Engels F, Koski GK, Bedrosian I, et al. Calcium signaling induces the acquisition of dendritic cell characteristics in CML myeloid progentor cells.Proc Natl Acad Sci U S A 1999;96:10332–7.

    Article  PubMed  CAS  Google Scholar 

  24. Kim CJ, Cormier J, Roden M, et al. Use of recombinant poxviruses to stimulate anti-melanoma T cell reactivity.Ann Surg Oncol 1998;5:64–76.

    Article  PubMed  CAS  Google Scholar 

  25. Yang S, Kittlesen D, Slingluff CL, Vervaert CE, Seigler HF, Darrow TL. Dendritic cells infected with a vaccinia vector carrying the human gp 100 gene simultaneously present multiple specificities and elicit high-affinity T cells reactive to multiple epitopes and restricted by HLA-A2 and-A3J Immunol 2000;164:4204–11

    PubMed  CAS  Google Scholar 

  26. Bhardwaj N, Bender A, Gonzalez N, Bui LK, Garrett MC, Steinman RN. Influenza virus-infected dendritic cell stimulate strong proliferative and cytolytic responses from human CD8+ T cells.J Clin Invest 1994;94:797–807.

    Article  PubMed  CAS  Google Scholar 

  27. Rosenberg SA, Zhai Y, Yang JC, et al. Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp 100 melanoma antigens.J Natl Cancer Inst 1998; 90:1894–900.

    Article  PubMed  CAS  Google Scholar 

  28. Ribas A, Butterfield LH, McBride WH, et al. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells.Cancer Res 1997;57:2865–9.

    PubMed  CAS  Google Scholar 

  29. Yang S, Vervaert C, Burch J, Grichnik J, Seigler FH, Darrow T. Murine dendritic cells transfected with human gp 100 elicit both antigen-specific CD8 and CD4 T-cell responses and are more effective than DNA vaccines at generating anti-tumor immunity.Int J Cancer 1999;83:532–44.

    Article  PubMed  CAS  Google Scholar 

  30. Overwijk W, Lee D, Surman D, et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destriction in mice: requirement for CD4+ T lymphocytes.Proc Natl Acad Sci U S A 1999;96:2982–9.

    Article  PubMed  CAS  Google Scholar 

  31. Kaplan J, Yu Q, Piraino S, et al. Induction of anti-tumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens.J Immunol 1999;163:699–705.

    PubMed  CAS  Google Scholar 

  32. Mazzara G, Destree A, Mahr A. Generation and analysis of vaccinia virus recombinants.Methods Enzymol 1993;217:557–81.

    PubMed  CAS  Google Scholar 

  33. Rivoltini L, Barracchini KC, Viggiano V, et al. Quantitative correlation between HLA class I allele expression and recognition of melanoma cells by antigen-specific cytotoxic T lymphocytes.Cancer Res 1995;55:3149–57.

    PubMed  CAS  Google Scholar 

  34. Salter R, Howell D, Cresswell P Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids.Immunogenetics 1985;21:235–42.

    Article  PubMed  CAS  Google Scholar 

  35. Parkhurst MR, Salgaller ML, Southwood S, et al. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp 100 modified at HLA-A*0201-binding residues.J Immunol 1991;157:2539–48.

    Google Scholar 

  36. Rivoltini L, Kawakami Y, Sakaguchi K, et al. Induction of tumorreactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients byin vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1J Immunol 1995;154:2257–65.

    PubMed  CAS  Google Scholar 

  37. Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation.Annu Rev Immunol 1993;11:403–10.

    Article  PubMed  CAS  Google Scholar 

  38. Faries MB, Bedrosian I, Xu S, et al. Calcium signaling inhibits IL-12 production and activates CD83+ dendritic cells that induce Th2 cell development.Blood 2001;98:2489–97.

    Article  PubMed  CAS  Google Scholar 

  39. Lyakh LA, Koshi GK, Young HA, Spence SE, Cohen PA, Rice NR. Adenovirus type 5 vectors induce dendritic cell differentiation in human CD14(+) monocytes cultured under serum-free conditions.Blood 2002;99:600–8.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen PA, Peng L, Plautz GE, Kim JA, Weng DE, Shu S. CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection.Crit Rev Immunol 2000;20:17–56.

    PubMed  CAS  Google Scholar 

  41. Czerniecki BJ, Cohen PA, Faries M, Xu S, Roros JG, Bedrosian I. Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines.Crit Rev Immunol 2001;21:157–78.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Fraker MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabakaran, I., Menon, C., Xu, S. et al. Mature CD83+ dendritic cells infected with recombinant gp 100 vaccinia virus stimulate potent antimelanoma T cells. Annals of Surgical Oncology 9, 411–418 (2002). https://doi.org/10.1007/BF02573878

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02573878

Key Words

Navigation