Green's equivalences in finite semigroups of binary relations

Abstract

This paper contains an algorithm which, given a set of generators of a semigroupS of binary relations on a finite set, computes the structure ofS in terms of Green's equivalences. The algorithm is a generalization to semigroups of binary relations of an algorithm obtained by Lallement and McFadden for semigroups of transformations.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Champarnaud, J. M., and G. Hansel,AUTOMATE, a computing package for automata and finite semigroups, J. Symbolic Comput.12 (1991), 197–220.

    MATH  MathSciNet  Google Scholar 

  2. [2]

    de Caen, D., and D. A. Gregory,Prime Boolean matrices, Lecture Notes in Math., vol. 829, Springer-Verlag, 1980, p. 169.

    Google Scholar 

  3. [3]

    Devadze, H. M.,Generating sets of the semigroup of all binary relations on a finite set, Dokl. Akad. Nauk BSSR12 (1968), 765–768 (Russian).

    MathSciNet  Google Scholar 

  4. [4]

    Hofmann, K. H., and P. S. Mostert, “Elements of compact semigroups,” C. E. Merrill Books, Columbus, Ohio, 1966.

    MATH  Google Scholar 

  5. [5]

    Howie, J. M., “An introduction to semigroup theory,” Academic Press, London, 1976.

    MATH  Google Scholar 

  6. [6]

    Kim, K. H., and F. W. Roush,On generating regular elements in the semigroup of binary relations, Semigroup Forum14 (1977), 29–32.

    MATH  Article  Google Scholar 

  7. [7]

    Konieczny, J., “Semigroups of binary relations,” Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 1992.

    Google Scholar 

  8. [8]

    Lallement, G., “Semigroups and combinatorial applications,” John Wiley & Sons, New York, 1979.

    MATH  Google Scholar 

  9. [9]

    Lallement, G. and R. McFadden,On the determination of Green's relations in finite transformation semigroups, J. Symbolic Comput.10 (1990), 481–498.

    MATH  MathSciNet  Article  Google Scholar 

  10. [10]

    Le Rest, E., and M. Le Rest,Une représentation fidèle des groupes d'un monoïde de relations binaires sur un ensemble fini, Semigroup Forum,21 (1980), 167–172.

    MATH  Article  MathSciNet  Google Scholar 

  11. [11]

    Markowsky, G., “The number ofD-classes in the semigroup of binary relations on 5-elements,” Report No. 91-6, Department of Computer Science, University of Maine, Orono, ME, 1991.

    Google Scholar 

  12. [12]

    Perrot, J. F., “Contribution ă l'étude des monoïdes syntactiques et de certains groupes associés aux automates finis,” Doctoral Thesis, University of Paris, Paris, France, 1972.

    MATH  Google Scholar 

  13. [13]

    Plemmons, R. J., and M. T. West,On the semigroup of binary relations, Pacific J. Math.35 (1970), 743–753.

    MathSciNet  Google Scholar 

  14. [14]

    Zaretskii, K. A.,The semigroup of binary relations, Mat. Sb.61 (1963), 291–305 (Russian).

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Part of this research was supported by a Mary Washington College Faculty Development Grant.

Communicated by Gerard Lallement

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konieczny, J. Green's equivalences in finite semigroups of binary relations. Semigroup Forum 48, 235–252 (1994). https://doi.org/10.1007/BF02573672

Download citation

Keywords

  • Partial Order
  • Binary Relation
  • Maximal Subgroup
  • Nonzero Entry
  • Semigroup Forum