Skip to main content
Log in

Quasi-minimizing surfaces in hyperbolic space

Mathematische Zeitschrift Aims and scope Submit manuscript

Cite this article

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Anderson, M.T.: Complete minimal varieties in hyperbolic space. Invent. Math.69, 477–494 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bangert, V.: Laminations of 3-tori by least area surfaces. In: Rabinowitz, P.H., Zehnder, E. (eds.) Analysis, et cetera, pp. 85–114. Boston, MA: Academic Press 1990

    Google Scholar 

  3. Burago, Yu.D., Zalgaller, V.A.: Geometric Inequalities. Berlin Heidelberg New York: Springer 1988

    MATH  Google Scholar 

  4. Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969

    MATH  Google Scholar 

  5. Gehring, F.W.: Symmetrization of rings in space. Trans. Am. Math. Soc.101, 499–519 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gromov, M.: Hyperbolic groups. In: Gersten, S.N. (ed.) Essays in Group Theory, pp. 75–263. Berlin Heidelberg New York: Springer 1987

    Google Scholar 

  7. Gromov, M.: Foliated Plateau problem. Part 1, Minimal Varieties. Geom. Funct. Anal.1 (1990)

  8. Hedlund, G.A.: Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. Math.33, 719–739 (1932)

    Article  MathSciNet  Google Scholar 

  9. Hirsch, M.W.: Differential topology. (Grad. Texts Math., vol. 33) Berlin Heidelberg New York: Springer 1976

    MATH  Google Scholar 

  10. Klingenberg, W.: Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ. Invent. Math.14, 63–82 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Morse, M.: A fundamental class of a geodesics on any surface of genus greater than one. Trans. Am. Math. Soc.26, 25–60 (1924)

    Article  MathSciNet  Google Scholar 

  12. Schmidt, E.: Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raumjeder Dimensionszahl. Math. Z49, 1–109 (1944)

    Article  Google Scholar 

  13. White, B.: Mappings that minimize area in their homotopy classes. J. Differ. Geom.20, 433–466 (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lang, U. Quasi-minimizing surfaces in hyperbolic space. Math Z 210, 581–592 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: