Skip to main content

On central configurations

This is a preview of subscription content, access via your institution.

References

  1. Euler, L.: De moto rectilineo trium corporum se mutuo attahentium. Novi Comm. Acad. Sci. Imp. Petrop.11, 144–151 (1967)

    Google Scholar 

  2. Hall, G.R.: Central configurations of the 1+N body problem (preprint)

  3. Lagrange, J.L.: Ouvres, vol. 6, Paris, pp 272–292, 1873

  4. Moeckel, R.: Relative equilibria of the four-body problem. Ergodic Theory Dyn. Syst.5, 417–435 (1985)

    MATH  MathSciNet  Google Scholar 

  5. McGehee, R.: Singularities in classical celestial mechanics. In: Proc. of Int. Cong. Math., Helsinki, pp. 827–834, 1978

  6. Meyer, K., Schmidt, D.: Bifurcation of relative equilibria in theN-body and Kirchoff problem (preprint)

  7. Moulton, F.R.: The straight line solutions of the problem ofN bodies. Ann. Math., II. Ser12, 1–17 (1910)

    MathSciNet  Google Scholar 

  8. Pacella, F.: Central configurations and the equivariant Morse theory. Arch. Ration. Mech. Anal.97, 59–74 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Palmore, J.: Classifying relative equilibria. I, Bull. Am. Math. Soc.79, 904–908 (1973); II, Bull. Am. Math. Soc.81, 489–491 (1975); III, Lett. Math. Phys.1, 71–73 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Saari, D.: On the role and properties of central configurations. Cel. Mech.21, 9–20 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Siegel, C., Moser, J.: Lectures on celestial mechanics. Berlin, Heidelberg, New York: Springer, 1971

    MATH  Google Scholar 

  12. Smale, S.: Topology and mechanics. I, Invent. Math.10, 305–331 (1970); II, Invent. Math.11, 45–64 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. Xia, S.: Central configurations with many small masses (preprint)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Science Foundation and the Forschungsinstitut für Mathematik, ETH, Zürich

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moeckel, R. On central configurations. Math Z 205, 499–517 (1990). https://doi.org/10.1007/BF02571259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02571259

Keywords

  • Invariant Manifold
  • Positive Eigenvalue
  • Celestial Mechanic
  • Equal Mass
  • Regular Polygon