Mathematische Zeitschrift

, Volume 204, Issue 1, pp 373–380 | Cite as

On the surjective Dunford-Pettis Property

  • Fernando Bombal
  • Pilar Cembranos
  • José Mendoza


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A] Andrews, K.: Dunford-Pettis sets in the Bochner integrable functions. Math. Ann.241, 35–41 (1979)MATHCrossRefMathSciNetGoogle Scholar
  2. [A-H] Azimi, P., Hagler, J.N.: Examples of hereditarily ℓ1 Banach spaces failing the Schur property. Pac. J. Math.,122, 287–297 (1986)MATHMathSciNetGoogle Scholar
  3. [B] Bombal, F.: Operators on vector sequences spaces. In: Martin-Peinador, E., Rodés, A., (eds.) Cambridge; Cambridge University Press 1989Google Scholar
  4. [B-P] Bombal, F., Porras, B.: Strictly singular and strictly cosingular operators onC(K, E). Math. Nachr.143, 355–364 (1989)MATHMathSciNetGoogle Scholar
  5. [Bou] Bourgain, J.: On the Dunford-Pettis property. Proc. Am. Math. Soc.81, 265–272 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. [C] Cembranos, P.: On Banach spaces of vector valued continuous functions. Bull. Aust. Math. Soc.28, 175–186 (1983)MATHMathSciNetCrossRefGoogle Scholar
  7. [D-F] davis, W.J., Figiel, T., Johnson, W.B., Pelczynski, A.: Factoring weakly compact operators. J. Funct. Anal.17, 311–327 (1974)MATHCrossRefMathSciNetGoogle Scholar
  8. [D1] Diestel, J.: A survey of results related to the Dunford-Pettis property. Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces. Contemp. Math.2 (1980)Google Scholar
  9. [D2] Diestel, J.: Sequences and series in Banach spaces. Graduate Texts in Mathematics, n. 92. Berlin Heidelberg New York: Springer 1984Google Scholar
  10. [D-U] Diestel, J., Uhl. J.J., Jr.: Vector measures. Math. Surv. Monogr.15 (1988)Google Scholar
  11. [L] Leung, D.: Uniform convergence of Operators and Grothendieck spaces with the Dunford-Pettis property. Math. Z.197, 21–32 (1988)MATHCrossRefMathSciNetGoogle Scholar
  12. [L-T] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces I. Ergebnisse der Mathematik, vol. 92. Berlin Heidelberg New York: Springer 1977MATHGoogle Scholar
  13. [P] Pietsch, A.: Operators ideals. Amsterdam New York: North-Holland 1980Google Scholar
  14. [P-T] Pethe, P., Thakare, N.: A note on the Dunford-Pettis property and the Schur property. Indiana J. Math.27, 91–92 (1978)MATHCrossRefMathSciNetGoogle Scholar
  15. [T] Talagrand, M.: La propiété de Dunford-Pettis dansC(K, E) andL 1(E). Isr. J. Math.44, 317–321 (1983)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Fernando Bombal
    • 1
  • Pilar Cembranos
    • 1
  • José Mendoza
    • 1
  1. 1.Departmento de Análisis Matemático, Facultad de Ciencias MatemáticasUniversidad Complutense de MadridMadridSpain

Personalised recommendations