Advertisement

Discrete & Computational Geometry

, Volume 14, Issue 4, pp 445–462 | Cite as

Efficient piecewise-linear function approximation using the uniform metric

  • M. T. Goodrich
Article

Abstract

We given anO(n logn)-time method for finding a bestk-link piecewise-linear function approximating ann-point planar point set using the well-known uniform metric to measure the error, ε≥0, of the approximation. Our methods is based upon new characterizations of such functions, which we exploit to design an efficient algorithm using a plane sweep in “ε space” followed by several applications of the parametric-searching technique. The previous best running time for this problems wasO(n2).

Keywords

Computational Geometry Binary Search Simple Polygon Geodesic Path Polygonal Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. K. Agarwal, A. Aggarwal, B. Aronov, S. R. Kosaraju, B. Schieber, and S. Suri, Computing external farthest neighbors for a simple polygon.Discrete Appl. Math.,31 (2), 97–111, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri, Selecting distances in the plane,Proc. 6th Ann. ACM Symp. on Computational Geometry, pp. 321–331, 1990.Google Scholar
  3. 3.
    P. K. Agarwal and J. Matoušek, Ray shooting and parametric search,Proc. 24th Ann. ACM Symp. on Theory of Computing, pp. 517–526, 1992.Google Scholar
  4. 4.
    P. K. Agarwal, M. Sharir, and S. Toledo, Applications of parametric searching in geometric optimization,Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 72–82, 1992.Google Scholar
  5. 5.
    A. Aggarwal, H. Booth, J. O'Rourke, S. Suri, and C. K. Yap, Finding minimal convex nested polygons,Proc. 1st Ann. ACM Symp. on Computational Geometry, pp. 296–304, 1985.Google Scholar
  6. 6.
    E. M. Arkin, J. S. B. Mitchell, and S. Suri, Optimal link path queries in a simple polygon,Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 269–279, 1992.Google Scholar
  7. 7.
    B. Aronov, On the geodesic Voronoi diagram of point sites in a simple polygon,Algorithmica,4, 109–140, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R. E. Bellman and R. S. Roth, Curve fitting by segmented straight lines,Amer. Statist. Assoc. J.,64, 1079–1084, 1969.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. E. Bellman and R. S. Roth,Methods in Approximation: Techniques for Mathematical Modelling, Reidel, Boston, MA, 1986.CrossRefzbMATHGoogle Scholar
  10. 10.
    B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink, Ray shooting in polygons using geodesic triangulations,Proc. 18th Internat. Colloq. on Automata Language Programming. Lecture Notes in Computer Science, vol. 510, Springer-Verlag, Berlin, pp. 661–673, 1991.CrossRefGoogle Scholar
  11. 11.
    B. Chazelle, H. Edelsburnner, L. Guibas, and M. Sharir, Diameter, width, closest line pair, and parametric searching,Proc. 8th Ann. ACM Symp. on Computational Geometry, pp. 120–129, 1992.Google Scholar
  12. 12.
    K. L. Clarkson, Linear programming inO(n3d 2) time,Inform. Process. Lett.,22, 21–24, 1986.MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Cole, Slowing down sorting networks to obtain faster sorting algorithms,J. Assoc. Comput. Mach.,34, 200–208, 1987.MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Cole, Parallel merge sort,SIAM J. Comput.,17 (4), 770–785, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R. Cole, J. Salowe, W. Steiger, and E. Szemerédi, An optimal-time algorithm for slope selection,SIAM J. Comput.,18, 792–810, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. D. Conte and C. de Boor,Elementary Numerical Analysis: An Algorithmic Approach, 3rd edn., McGraw-Hill, New York, 1980.zbMATHGoogle Scholar
  17. 17.
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, MIT Press, Cambridge, MA, 1990.zbMATHGoogle Scholar
  18. 18.
    P. J. Davis,Interpolation and Approximation, Blaisdell, New York, 1963.zbMATHGoogle Scholar
  19. 19.
    P. Dierckx,Curve and Surface Fitting with Splines, Clarendon Press, New York, 1993.zbMATHGoogle Scholar
  20. 20.
    M. E. Dyer, Linear time algorithms for two- and three-variable linear programs,SIAM J. Comput.,13, 31–45, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    H. Edelsburnner,Agorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science, vol. 10, Springer-Verlag, Heidelberg, 1987.CrossRefGoogle Scholar
  22. 22.
    H. ElGindy and M. T. Goodrich, Parallel algorithms for shortest path problems in polygons,Visual Comput.,3, 371–378, 1988.CrossRefzbMATHGoogle Scholar
  23. 23.
    S. Ghosh, Computing visibility polygon from a convex set and related problems.J. Algorithms,12, 75–95, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    S. K. Ghosh and A. Maheshwari, Parallel algorithms for all minimum link paths and link center problems,Proc. 3rd Scand. Workshop on Algorithm Theory, Lecture Notes in Computer Science, vol. 621, Springer-Verlag, Berlin, pp. 106–117, 1992.Google Scholar
  25. 25.
    M. T. Goodrich and R. Tamassia, Dynamic ray shooting and shortest paths via balanced geodesic triangulations,Proc. 9th Ann. ACM Symp. on Computational Geometry, pp. 318–327, 1993.Google Scholar
  26. 26.
    L. J. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygonProc. 3rd Ann. ACM Symp. on Computational Geometry, pp. 50–63, 1987.Google Scholar
  27. 27.
    L. J. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon,J. Comput. System Sci.,39, 126–152, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons.Algorithmica,2, 209–233, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink, Approximating polygons and subdivisions with minimum link paths,Proc. 2nd Ann. SIGAL Internat. Symp. on Algorithms, Lecture Notes in Computer Science, vol. 557, Springer-Verlag, Berlin, pp. 151–162, 1991.Google Scholar
  30. 30.
    S. L. Hakimi and E. F. Schmeichel, Fitting polygonal functions to a set of points in the plane,CVGIP: Graph. Mod. Image Proc.,53 (2), 132–136, 1991.zbMATHGoogle Scholar
  31. 31.
    J. Hershberger, A new data structure for shortest path queries in a simple polygon,Inform. Process. Lett.,38, 231–235, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    J. Hershberger and J. Snoeyink, Computing minimum length paths of a given homotopy class,Proc. 2nd Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, vol. 519, Springer-Verlag, Berlin, pp. 331–342, 1991.CrossRefGoogle Scholar
  33. 33.
    H. Imai and M. Iri, Computational-geometric methods for polygonal approximations of a curve,Comput. Vision Graph. Image Process.,36, 31–41, 1986.CrossRefGoogle Scholar
  34. 34.
    H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function,J. Inform. Process.,9 (3), 159–162, 1986.MathSciNetzbMATHGoogle Scholar
  35. 35.
    H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms, inComputational Morphology, G. T. Toussaint, ed., North-Holland, Amsterdam, pp. 71–86, 1988.Google Scholar
  36. 36.
    D. L. B. Jupp, Approximation to data by splines with free knots,SIAM J. Number. Anal.,15 (2), 328–343, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Y. Ke, An efficient algorithm for link-distance problems,Proc. 5th Ann. ACM Symp. on Computational Geometry, pp. 69–78, 1989.Google Scholar
  38. 38.
    D. T. Lee and F. P. Preparata, Euclidean shortes paths in the presence of rectilinear barriers,Networks,14, 393–410, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    W. Lenhart, R. Pollack, J.-R. Sack, R. Seidel, M. Sharir, S. Suri, G. T. Toussaint, S. Whitesides, and C. K. Yap, Computing the link center of a simple polygon,Discrete Comput. Geom.,3, 281–293, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear programming,Proc. 8th Ann. ACM Symp. on Computational Geometry, pp. 1–8, 1992Google Scholar
  41. 41.
    N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms,J. Assoc. Comput. Mach.,30, 852–865, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    N. Megiddo, Linear-time algorithms for linear programming inR 3 and related problems,SIAM J. Comput.,12, 759–776, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    N. Megiddo, Linear programming in linear time when the dimension is fixed,J. Assoc. Comput. Mach.,31, 114–127, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    A. Melkman and J. O'Rourke, On polygonal chain approximation, inComputational Morphology, G. T. Toussaint, ed., North-Holland, Amsterdam, pp. 87–95, 1988.Google Scholar
  45. 45.
    J. S. B. Mitchell, An algorithmic approach to some problems in terrain navigation,Artificial Intelligence,37, 171–201, 1988.CrossRefzbMATHGoogle Scholar
  46. 46.
    J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem,SIAM J. Comput.,16, 647–668, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    J. S. B. Mitchell, C. Piatko, and E. M. Arkin, Computing a shortestk-link path in a polygon,Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science, pp. 573–582, 1992.Google Scholar
  48. 48.
    J. S. B. Mitchell, G. Rote, and G. Woeginger, Minimum-link paths among obstacles, in the plane,Proc. 6th Ann. ACM Symp. on Computational Geometry, pp. 63–72, 1990.Google Scholar
  49. 49.
    J. S. B. Mitchell and S. Suri, Separation and approximation of polyhedral surfaces,Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pp. 296–306, 1992.Google Scholar
  50. 50.
    J. O'Rourke,Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.zbMATHGoogle Scholar
  51. 51.
    F. P. Preparata and M. I. Shamos,Computational Geometry: an Introduction, Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
  52. 52.
    J.-M. Robert and G. Toussaint, Linear approximation of simple objects,Proc. 9th Symp. on Theoretical Aspects of Computing Science, Lecture Notes in Computer Science, vol. 577, Springer-Verlag, Berlin, pp. 233–244, 1992.Google Scholar
  53. 53.
    R. Seidel, Small-dimensional linear programming and convex hulls made easy,Discrete Comput. Geom.,6, 423–434, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    S. Suri, A linear time algorithm for minimum link paths inside a simple polygon,Comput Vision Graph. Image Process.,35, 99–110, 1986.CrossRefzbMATHGoogle Scholar
  55. 55.
    S. Suri, Minimum link paths in polygons and related problems, Ph.D. thesis, Department of Computer Sceence, Johns Hopkins University, Baltimore, MD, 1987.Google Scholar
  56. 56.
    S. Suri, Computing geodesic furthest neighbors in simple polygons,J. Comput. System Sci.,39, 220–235, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    G. T. Toussaint, On the complexity of approximating polygonal curves in the plane,Proc. IASTED, Internat. Symp. on Robotics and Automation, Lugano, 1985.Google Scholar
  58. 58.
    D. P. Wang, N. F. Huang, H. S. Chao, and R. C. T. Lee, Plane sweep algorithms for polygonal approximation problems with applications,Proc. 4th Ann. Internat. Symp. on Algorithms and Computing (ISAAC93), Lecture Notes in Computer Science, vol. 762, Springer-Verlag, Berlin, pp. 515–522, 1993.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • M. T. Goodrich
    • 1
  1. 1.Department of Computer ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations