Skip to main content

Advertisement

Log in

Phorbol ester (TPA) reduces prostaglandin E2-stimulated cAMP production by desensitization of prostaglandin E2 receptors in a clonal osteoblast-like cell line, MOB 3-4

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

A clonal osteoblast-like cell line, MOB 3-4, increased cAMP production in response to prostaglandin E2 (PGE2) (5–500 ng/ml). The purpose of this study was to show the effects of tumor-promoting phorbol ester (e.g., 12-O-tetradecanoylphorbol 13-acetate, TPA) on basal and PGE2-stimulated cAMP production and the affinity of PGE2 receptors in the cells. Pretreatment with TPA (1 nM–10 μM) for 30 minutes increased basal cAMP production, whereas it markedly reduced the PGE2-stimulated cAMP production in the presence of 0.1 mM isobuthylmethyl xanthine. Both the TPA increase and reduction were dose- and time-dependent. However, TPA exerted no effect on forskolinor cholera toxin-stimulated cAMP production. Copretreatment with TPA and H-7, an inhibitor of protein kinase C (PKC), prevented the TPA-induced increase in basal cAMP production, whereas it did not prevent the reduction of the PGE2-stimulated cAMP production. On the other hand, TPA (0.1–10 μM) decreased3H-PGE2 binding in a dose- and time-dependent manner. Scatchard analysis revealed that TPA decreased the apparent affinity of PGE2 receptors without effect on their apparent number. In addition, 1-oleoyl-2-acetylglycerol (12.6 μM), a synthetic diacylglycerol analog, did not mimic the TPA action on3H-PGE2 binding. Thus, TPA at relatively high concentrations appeared to increase basal cAMP production by a PKC-mediated mechanism, and it appeared to directly act on PGE2 receptors to decrease their apparent affinity and thereby reduce the PGE2-stimulated cAMP production in the clonal osteoblast-like MOB 3-4 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heyworth CM, Whetton AD, Kinsella AR, Houslay MD (1984) The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate inhibits glucagon-stimulated adenylate cyclase activity. FEBS Lett 170:38–42

    Article  PubMed  CAS  Google Scholar 

  2. Heyworth CM, Wilson SP, Gawler DJ, Houslay MD (1985) The phorbol ester TPA prevents the expression of both glucagon desensitization and the glucagon-mediated block of insulin stimulation of the peripheral plasma membrane cyclic-AMP phosphodiesterase in rat hepatocytes. FEBS Lett 187:196–199

    Article  PubMed  CAS  Google Scholar 

  3. Mukhopadhyay AK, Schumader M (1985) Inhibition of human chorionic gonadotropin-stimulated adenylate cyclase in purified mouse Leydig cells by the phorbol ester phorbol-12-myristate-13-acetate, FEBS Lett 187:56–60

    Article  PubMed  CAS  Google Scholar 

  4. Rebois RV, Patel J (1985) Phorbol ester causes desensitization of gonadotropin-responsive adenylate cyclase in a murine Leydig tumor cell line. J Biol Chem 260:8026–8031

    PubMed  CAS  Google Scholar 

  5. Bell JD, Buxton ILO, Brunton LL (1985) Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters: putative effect of C kinase on αs GTP-catalytic subunit interaction. J Biol Chem 260:2625–2628

    PubMed  CAS  Google Scholar 

  6. Cronin MJ, Canonico PL (1985) Tumor promotors enhance basal and growth hormone releasing factor stimulated cyclic AMP levels in anterior pituitary cells. Biochem Biophys Res Commun 129:404–410

    Article  PubMed  CAS  Google Scholar 

  7. Nabika T, Nara T, Yamori Y, Lovenberg W, Endo J (1985) Angiotensin II and phorbol ester enhance isoproterenol- and vasoactive intestinal peptide-induced cyclic AMP accumulation in vascular smooth muscle cells. Biochem Biophys Res Commun 131:30–36

    Article  PubMed  CAS  Google Scholar 

  8. Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB (1985) Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinocytes. Nature 314:359–360

    Article  PubMed  CAS  Google Scholar 

  9. Vanecek J, Sugden D, Weller JL, Klein DC (1985) Atypical synergistic α1- and β-adrenergic regulation of adenosine 3′,5′-monophosphate in rat pinocytes. Endocrinology 116:2167–2173

    PubMed  CAS  Google Scholar 

  10. Grotendorst GR, Schimmel SD (1980) Alteration of cyclic nucleotide levels in phorbol 12-myristate 13-acetate treated myoblasts. Biochem Biophys Res Commun 93:301–307

    Article  PubMed  CAS  Google Scholar 

  11. Brostrom MA, Brostrom CO, Brotman LA, Breen SS (1983) Regulation of Ca2+-dependent cyclic AMP accumulation and Ca2+ metabolism in intact pituitary tumor cells by modulators of prolactin production. Mol Pharmacol 23:399–408

    PubMed  CAS  Google Scholar 

  12. Brostrom MA, Brostrom CO, Brotman LA, Lee C, Wolff DJ, Geller HM (1982) Alterations of glial tumor cell Ca2+ metabolism and Ca2+-dependent cAMP accumulation by phorbol myristate acetate. J Biol Chem 257:6758–6765

    PubMed  CAS  Google Scholar 

  13. Coffey RG, Hadden JW (1983) Phorbol myristate acetate stimulation of lymphocyte guanylate cyclase and cyclic guanosine 3′,5′-monophosphate phosphodiesterase and reduction of adenylate cyclase. Cancer Res 43:150–158

    PubMed  CAS  Google Scholar 

  14. Hadden EM, Sadlik JR, Coffey RG, Hadden JW (1982) Effects of phorbol myristate acetate and lymphokine on cyclic 3′,5′-guanosine monophosphate levels and proliferation of macrophages. Cancer Res 42:3064–3069

    PubMed  CAS  Google Scholar 

  15. Bernier M, Clerget M, Berthrelon MC, Saez JM (1987) Stimulatory and inhibitory effects of protein kinase C activation and calcium ionophore on cultured pig Leydig cells. Eur J Biochem 163:181–188

    Article  PubMed  CAS  Google Scholar 

  16. Garte SJ, Belman S (1980) Tumour promotor uncoupled β-adrenergic receptor from adenylate cyclase in mouse epidermis. Nature 284:171–173

    Article  PubMed  CAS  Google Scholar 

  17. Jakobs KH, Bauer S, Watanabe Y (1985) Modulation of adenylate cyclase of human platelets by phorbol ester. Impairment of the hormone-sensitive inhibitory pathway. Eur J Biochem 151:425–430

    Article  PubMed  CAS  Google Scholar 

  18. Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431–437

    Article  PubMed  CAS  Google Scholar 

  19. Raisz LG, Martin TJ (1984) Prostaglandins in bone and mineral metabolism. In: Peck WA (ed) Bone and mineral research. Ann 2, Elsevier, Amsterdam, pp 286–310

    Google Scholar 

  20. Rodan GA, Rodan SB (1984) Expression of the osteoblastic phenotype. In: Peck WA (ed) Bone and mineral research. Ann 2, Elsevier, Amsterdam, pp 244–285

    Google Scholar 

  21. Halushka PV, Maris DE, Mayeux PR, Morinelli TA (1989) Thromboxane, prostaglandin and leukotriene receptors. Ann Rev Pharmacol Toxicol 10:213–239

    Article  Google Scholar 

  22. Raisz LG, Vanderhoek JY, Simmons HA, Kream BE, Nicholaou KC (1979) Prostaglandin synthesis by fetal rat bone in vitro: evidence for a role of prostacyclin. Prostaglandins 17:905–914

    Article  PubMed  CAS  Google Scholar 

  23. Rodan SB, Rodan GA, Simmons HA, Wolenga RW, Feinstein MB, Raisz LG (1981) Bone resorptive factor produced by osteosarcoma cells with osteoblastic features is PGE2. Biochem Biophys Res Commun 102:1358–1365

    Article  PubMed  CAS  Google Scholar 

  24. Nolan RD, Partridge NC, Godfrey HM, Martin TJ (1983) Cyclo-oxygenase products of arachidonic acid metabolism in rat osteoblasts in culture. Calcif Tissue Int 35:294–297

    Article  PubMed  CAS  Google Scholar 

  25. Chyun YS, Raisz LG (1984) Stimulation of bone formation by prostaglandin E2. Prostaglandins 27:97–103

    Article  PubMed  CAS  Google Scholar 

  26. Kawase T, Ishikawa I, Orikasa M, Suzuki A (1989) Aluminum enhances the stimulatory effect of NaF on prostaglandin E2 synthesis in a clonal osteoblast-like cell line, MOB 3-4, in vitro. J Biochem 106:8–10

    PubMed  CAS  Google Scholar 

  27. Kawase T, Ishikawa I, Suzuki A (1988) NaF-induced Ca2+ mobilization is dependent upon the culture density in a parathyroid hormone-responsive osteoblast-like cell line. Life Sci 43:2241–2247

    Article  PubMed  CAS  Google Scholar 

  28. Kawase T, Suzuki A (1990) Initial responses of a clonal osteoblast-like cell line, MOB 3-4, to phosphatidic acid in vitro. Bone Miner 10:61–70

    Article  PubMed  CAS  Google Scholar 

  29. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  30. Robertson RP (1986) Characterization and regulation of prostaglandin and leukotriene receptors: an overview. Prostaglandins 31:395–411

    Article  PubMed  CAS  Google Scholar 

  31. Smith WL, Watanabe T, Umegaki K, Sonnenburg WK (1987) General biochemical mechanism for prostaglandin actions: direct coupling of prostanoid receptors to guanine nucleotide regulatory proteins. Adv Prostaglandin Thromboxane Leukotriene Res 17:463–466

    Google Scholar 

  32. Ashby B (1986) Kinetic evidence indicating separate stimulatory and inhibitory prostaglandin receptors on platelet membranes. J Cycl Nucleotide Protein Phosphorylation Res 11:291–300

    CAS  Google Scholar 

  33. Negishi M, Ito S, Tanaka T, Yokohama H, Hayashi H, Katada T, Ui M, Hayaisi O (1987) Covalent cross-linking of prostaglandin E receptor from bovine adrenal medulla with a pertussis toxin-insensitive guanine nucleotide-binding protein. J Biol Chem 262:12077–12084

    PubMed  CAS  Google Scholar 

  34. Yokohama H, Tanaka T, Ito S, Negishi M, Hayashi H, Hayaishi O (1988) Prostaglandin E receptor enhancement of catecholamine release may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem 263:1119–1122

    PubMed  CAS  Google Scholar 

  35. Kawase T, Orikasa M, Suzuki A (in press) Effects of prostaglandin E2 and F on cytoplasmic pH in a clonal osteoblast-like cell line, MOB 3-4. J Cell Physiol

  36. Karaplis AC, Powell WS (1981) Prostaglandin E-binding sites in the fetal adrenal. Endocrinology 109:2124–2128

    PubMed  CAS  Google Scholar 

  37. Robertson P, Little SA (1983) Down-regulation of prostaglandin E receptors and homologous desensitization of isolated adipocytes. Endocrinology 113:1732–1738

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawase, T., Orikasa, M. & Suzuki, A. Phorbol ester (TPA) reduces prostaglandin E2-stimulated cAMP production by desensitization of prostaglandin E2 receptors in a clonal osteoblast-like cell line, MOB 3-4. Calcif Tissue Int 48, 167–175 (1991). https://doi.org/10.1007/BF02570551

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02570551

Key words

Navigation