Skip to main content
Log in

CYP2D6 genotype determination in the Danish population

  • Pharmacoepidemiology and Prescription
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

CYP2D6 genotyping was carried out by XbaI restriction fragment length polymorphism analysis and polymerase chain reaction in 168 healthy Danish volunteers, 77 extensive metabolizers (EM) and 91 poor metabolizers (PM) of sparteine. All EM were genotyped correctly as heterozygous or homozygous for the functional (wild type) gene, D6-wt. However, the D6-wt gene was apparently also present in 11 (12%) of the PM who accordingly were incorrectly genotyped as EM. The specificity of genotyping PM thus was 100% but the sensitivity was only 88%. The most common allele was the D6-wt with an apparent frequency of 0.741 (0.026) in the Danish population and the second most common allele was the D6-B with an apparent frequency of 0.194 (0.024).

The median (range) of the sparteine metabolic ratio (MR) in 47 homozygous D6-wt EM was 0.28 (0.11–4.10) and the corresponding value in heterozygous EM was 0.36 (0.11–9.10). The median difference was 0.09 (95% confidence interval: 0.02–0.16).

CYP2D6 phenotyping is a promising tool in tailoring the individual dose of tricyclic antidepressants, some neuroleplics and some antiarrhythmics. However if the genotype test could be improved with regard to both sensitivity in PM and the ability to predict CYP2D6 activity in EM then it would be of even greater clinical value in therapeutic drug monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvan G, Bechtel P, Iselius L, Gundert-Remy U (1990) Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol 39:533–537

    Article  PubMed  CAS  Google Scholar 

  2. Evans DAP, Mahgoub A, Sloan TP, Idle JR, Smith RL (1980) A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet 17:102–105

    PubMed  CAS  Google Scholar 

  3. Evans DAP, Harmer D, Downham DY, Whibley EJ, Idle JR, Ritchie J, Smith RL (1983) The genetic control of sparteine and debrisoquine metabolism in man with new methods of analysing bimodal distributions. J Med Genet 20:321–329

    PubMed  CAS  Google Scholar 

  4. Steiner E, Iselius L, Alvan G, Lindsten J, Sjöqvist (1985) A family study of genetic and environmental factors determining polymorphic hydroxylation of debrisoquine. Clin Pharmacol Ther 38:394–401

    Article  PubMed  CAS  Google Scholar 

  5. Brøsen K, Otton SV, Gram LF (1986) Sparteine oxidation polymorphism: a family study. Br J Clin Pharmacol 21:661–667

    PubMed  Google Scholar 

  6. Brøsen K, Sindrup SH, Skjelbo E, Nielsen KK, Gram LF (1983) Role of genetic polymorphism in psychopharmacology — an update. In: Gram LF, Balant LP, Meltzer HY, Dahl SG (eds) Clinical pharmacology in psychiatry. (Psychopharmacology Series, vol 10) Springer, Berlin Heidelberg New York 10:199–211

    Google Scholar 

  7. Dahl ML, Bertilsson L (1993) Genetically variable metabolism of antidepressants and neuroleptic drugs in man. Pharmacogenetics 3:61–70

    Article  PubMed  CAS  Google Scholar 

  8. Brøsen K (1993) The pharmacogenetics of the selective serotonin reuptake inhibitors. Clin Investig 71:1002–1009

    Article  PubMed  Google Scholar 

  9. Eichelbaum M, Gross AS (1990) The genetic polymorphism of debrisoquine/sparteine metabolism — clinical aspects. Pharmacol Ther 46:377–394

    Article  PubMed  CAS  Google Scholar 

  10. Dayer P, Desmeules J, Leemann T, Striberni R (1988) Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4 hydroxylation. Biochem Biophys Res Commun 125:374–380

    Article  Google Scholar 

  11. Sindrup S, Brøsen K, Bjerring P, Arendt-Nielsen L, Larsen U, Angelo HR, Gram LF (1990) Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 48:686–693

    Article  PubMed  CAS  Google Scholar 

  12. Ingelman-Sundberg M, Johansson I, Persson I, Yue QY, Dahl ML, Bertilsson L, Sjöqvist F (1992) Genetic polymorphism of cytochromes P450: interethnic differences and relationship to incidence of lung cancer. Pharmacogenetics 2:264–271

    Article  PubMed  CAS  Google Scholar 

  13. Smith CAD, Gough AC, Leigh PN, Summers BA, Harding AE, Marangore DM, Sturman SG, Schapira AHV, Williams AC, Spurr NK, Wolf CR (1992) Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson's disease. Lancet 339:1375–1377

    Article  PubMed  CAS  Google Scholar 

  14. Sindrup S, Poulsen L, Brøsen K, Arendt-Nielsen L, Gram LF (1993) Are poor metabolizers of sparteine/debrisoquine less pain tolerant than extensive metabolisers? Pain 53:335–339

    Article  PubMed  CAS  Google Scholar 

  15. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1983) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12:1–51

    Google Scholar 

  16. Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin H, Hardwick JP, Meyer UA (1988) Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331:442–446

    Article  PubMed  CAS  Google Scholar 

  17. Zanger UM, Vilbois F, Hardwick JP, Meyer UA (1988) Absence of hepatic cytochrome P450bufI. causes genetically deficient debrisoquine oxidation in man. Biochemistry 27:5447–5454

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez FJ, Vilbois F, Hardwick JP, McBride OW, Nebert DW Gelboin HV, Meyer UA (1988) Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics 2:174–179

    Article  PubMed  CAS  Google Scholar 

  19. Kimura S, Umeno M, Skoda RC, Meyer UA, Gonzalez FJ (1989) The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 45:889–904

    PubMed  CAS  Google Scholar 

  20. Skoda RC, Gonzalez FJ, Demierre A, Meyer UA (1988) Two mutant alleles of the human cytochrome D450db1-gene (P450IID1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci USA 85:5240–5243

    Article  PubMed  CAS  Google Scholar 

  21. Kagimoto M, Heim M, Kagimoto K, Zeugin T, Meyer UA (1990) Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. J Biol Chem 265:17209–17214

    PubMed  CAS  Google Scholar 

  22. Hanioka N, Kimura S, Meyer UA, Gonzalez FJ (1990) The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934 to A base change in intron 3 of a nutant CYP2D6 allele results in an aberrant splice recognition site. Am J Hum Genet 47:994–1001

    PubMed  CAS  Google Scholar 

  23. Tyndale R, Aoyama T, Broly F, Matsunaga T, Inaba T, Kalow W, Gelboin HV, Meyer UA, Gonzalez FJ (1991) Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: possible association with the poor metabolizer phenotype. Pharmacogenetics 1:16–32

    Article  Google Scholar 

  24. Gaedigk A, Blum M, Gaedigk R, Eichelbaum M, Meyer UA (1991) Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 48:943–950

    PubMed  CAS  Google Scholar 

  25. Heim MH, Meyer UA (1992) Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6. Genomics 14:49–58

    Article  PubMed  CAS  Google Scholar 

  26. Dahl ML, Johansson I, Palmertz MP, Ingelman-Sundberg M, Sjöqvist F (1992) Analysis of the CYP2D6 gene in relation to debrisoquine and desipramine hydroxylation in a Swedish population. Clin Pharmacol Ther 51:12–17

    Article  PubMed  CAS  Google Scholar 

  27. Heim MH, Meyer UA (1990) Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336:529–532

    Article  PubMed  CAS  Google Scholar 

  28. Broly F, Gaedigk A, Heim M, Eichelbaum M, Morike K, Meyer UA (1991) Debrisoquine/sparteine hydroxylation genotype and phenotype: analysis of common mutations and alleles of CYP2D6 in a European population. DNA Cell Biol 10:545–558

    Article  PubMed  CAS  Google Scholar 

  29. Brøsen K, Gram LF, Kragh-Sørensen P (1991) Extremely slow metabolism of amitriptyline but normal metabolism of imipramine and desipramine in an extensive metabolizer of sparteine, debrisoquine, and mephenytoin. Ther Drug Monit 13:177–182

    Article  PubMed  Google Scholar 

  30. Vinks A, Inaba T, Otton SV, Kalow W (1982) Sparteine metabolism in Canadian caucasians. Clin Pharmacol Ther 31:23–29

    Article  PubMed  CAS  Google Scholar 

  31. Brøsen K, Otton SV, Gram LF (1985) Sparteine oxidation polymorphism in Denmark. Acta Pharmacol Toxicol 57:357–360

    Article  Google Scholar 

  32. Lahiri DK, Nürnberg JI (1991) A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 19:5444

    Article  PubMed  CAS  Google Scholar 

  33. Elandt-Johnson RC (1971) Probability models and statistical methods in genetics. Wiley, New York

    Google Scholar 

  34. Johansson I, Yue QY, Dahl M-L, Heim M, Säwe J, Bertilsson L, Meyer UA, Sjöqvist F, Ingelman-Sundberg M (1991) Genetic analysis of the interethnic difference between Chinese and Caucasians in the polymorphic metabolism of debrisoquine and codeine. Eur J Clin Pharmacol 40:553–556

    PubMed  CAS  Google Scholar 

  35. Broly F, Meyer UA (1993) Debrisoquine oxidation polymorphism, phenotypic consequences of a 3-base-pair deletion in exon 5 of the CYP2D6 gene. Pharmacogenetics 3:123–130

    Article  PubMed  CAS  Google Scholar 

  36. Agundez JA, Martinez C, Ladero JM, Ledesma MC, Ramos JM, Martin R, Rodriguez A, Java C, Benitez J (1994) Debrisoquine oxidation genotype and susceptibility to lung cancer. Clin Pharmacol Ther 55:10–14

    Article  PubMed  CAS  Google Scholar 

  37. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjoqvist F, Ingelman-Sundberg M (1993) Inherited amplifications of an active gene in the cytochrome P450 2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 90:11825–11829

    Article  PubMed  CAS  Google Scholar 

  38. Brøsen K, Gram LF (1989) Clinical significance of the sparteine/debrisoquine oxidaton polymorphism. Eur J Clin Pharmacol 36:537–547

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brøsen, K., Gram, L.F., Nielsen, P.N. et al. CYP2D6 genotype determination in the Danish population. Eur J Clin Pharmacol 47, 221–225 (1994). https://doi.org/10.1007/BF02570501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02570501

Key words

Navigation