Skip to main content
Log in

Dimension de l’anneau des polynomes a valeurs entieres

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let A be a commutative domain with quotient field K and AS the ring of integer-valued polynomials thus AS={f∈K[X]; f(A)⊂A}; we show that the Krull dimension of AS is such that dim AS≥dim A[X]-1 and give examples where dim AS=dim A[X]-1. Considering chains of primes of AS above a maximal idealm of finite residue field, we give also examples where the length of such a chain can arbitrarily be prescribed (whereas in A[X] the length of such chains is always 1). To provide such examples we consider a pair of domains A⊂B sharing an ideal I such that A/I is finite; we give sufficient conditients to have AS⊂B[X] and show that in this case dim AS=dim B[X]. At last, as a generalisation of Noetherian rings of dimension 1, we consider domains with an ideal I such that A/I is finite and a power In of I is contained in a proper principal ideal of A; for such domains we show that every prime of AS above a primem containing I is maximal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  1. ANDERSON D.F., BOUVIER A., DOBBS D.E., FONTANA M. et KABBAJ S. On Jaffard domains. Expo Math.5, 145–175 (1988)

    MathSciNet  Google Scholar 

  2. BREWER J.W., MONTGOMERY P.A., RUTTER P.A. et HEINZER W.J. Krull dimension of polynomial rings. Springer-Verlag Lecture Notes311, 26–46 (1973)

    MathSciNet  Google Scholar 

  3. BASTIDA, E., GILMER R. Overrings and divisorial ideals of rings of the form D+M. Michigan Math. J.209, 79–95 (1973)

    MathSciNet  Google Scholar 

  4. BRIZOLIS D. Ideals in rings of integer valued polynomials. J.reine angew.Math.285, 28–52 (1976)

    MATH  MathSciNet  Google Scholar 

  5. CAHEN P-J. Couples d’anneaux partageant un idéal. Archiv der Math51, 505–514 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. CAHEN P-J, et CHABERT J-L. Coefficients et valeurs d’un polynôme. Bull.Sci.Math., 2ème série95, 295–304 (1971)

    MATH  MathSciNet  Google Scholar 

  7. CAHEN P-J. et HAOUAT Y. Polynômes à valeurs entières sur un anneau de pseudovaluation. Manuscripta Math.61, 23–31 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. CAHEN P-J., GRAZINNI F. et HAOUAT Y. Intégrité du complété et théorème de Stone-Weierstrass. Ann.Sci.Clermont21, 47–58 (1982)

    Google Scholar 

  9. CHABERT J-L. Les idéaux premiers de l’anneau des polynômes à valeurs entières. J.reine und angew. Math.293/294, 275–283 (1977)

    MathSciNet  Google Scholar 

  10. GILMER R: Multiplicative ideal theory. Dekker, New-York (1970)

    Google Scholar 

  11. GUNJI H. et McQUILLAN D.L. Polynomials with integral values. Proc.Royal Irish Acad.78, 1–7 (1978)

    MathSciNet  Google Scholar 

  12. HEDSTROM J.R. et HOUSTON E.G. Pseudo-valuation domains. Pacific J.Math.75, 137–147 (1978)

    MATH  MathSciNet  Google Scholar 

  13. HEDSTROM, J.R. et HOUSTON E.G. Pseudo-valuation domains II. Houston J.Math.4, 199–207 (1978)

    MATH  MathSciNet  Google Scholar 

  14. McQUILLAN D. On the coefficients and values of polynomial rings. Archiv der Math.30, 8–13 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. SEIDENBERG A. A note on the dimension of rings. Pacific J. Math.3, 505–512 (1953)

    MATH  MathSciNet  Google Scholar 

  16. SEIDENBERG A. A note on the dimension of rings II. Pacific J. Math.4, 603–614 (1954)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahen, PJ. Dimension de l’anneau des polynomes a valeurs entieres. Manuscripta Math 67, 333–343 (1990). https://doi.org/10.1007/BF02568436

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02568436

Navigation