manuscripta mathematica

, Volume 90, Issue 1, pp 479–487 | Cite as

Strongly prime alternative pairs with minimal inner ideals

  • Alberto Castellón Serrano
  • Antonio Fernández López
  • Amable García Martín
  • Cándido Martín González
Article

Abstract

In this paper, we use the known classification of the finite capacity simple alternative pairs and the version of the Litoff Theorem for Jordan pairs to describe all the strongly prime alternative pairs with nonzero socle. We study the inheritance of some properties (primeness, nondegenerancy,…) when passing from the original alternative pair to the symmetrized pair. Thus, we can apply Jordan theoretical results to the alternative case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Castellón Serrano and C. Martín González.Prime Alternative Triple Systems. In Non-Associative Algebra and its Applications. Santos González, Ed. Kluwer Academic Publishers. 73–79 (1994)Google Scholar
  2. 2.
    A. Castellón and J. A. Cuenca.Alternative H *-triple systems, Comm. in Alg. 20(11), 3191–3206 (1992)MATHGoogle Scholar
  3. 3.
    A. Castellón, A. García and C. Martín.Strongly Prime Alternative Triple Systems with Nonzero Socle. Preprint.Google Scholar
  4. 4.
    J.A. Cuenca Mira, A. García Martín and C. Martín González.Jacobson Density for Associative Pairs and its applications. Comm. in Alg., 17(10), 2595–2610 (1989)MATHGoogle Scholar
  5. 5.
    A. Fernández López, E. García Rus.Prime associative triple systems with nonzero socle. Comm. in Alg. 18(1), 1–13 (1990)MATHGoogle Scholar
  6. 6.
    A. Fernández López, E. García Rus and E. Sánchez Campos,Von Neumann Regular Jordan Banach Triple Systems. J. London Math. Soc. (2) 42 (1990), 32–48.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Fernández López, E. García Rus and E. Sánchez Campos.Prime Nondegenerate Jordan Triple Systems with Minimal Inner Ideals. Nova Science Publishers Inc. (1992) 143–166Google Scholar
  8. 8.
    N. Jacobson.Structure of Rings. Colloquium Publications 37. American Mathematical Society, Providence, R.I. (1984).Google Scholar
  9. 9.
    O. Loos,Alternative Tripelsysteme. Math. Ann. 198, 205–238 (1972)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    O. Loos,Jordan Pairs. Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, Vol. no. 460, 1975MATHGoogle Scholar
  11. 11.
    O. Loos.On the socle of a Jordan pair. Collect. Math. 40, 2 (1989), 109–125MATHMathSciNetGoogle Scholar
  12. 12.
    O. Loos.Finiteness conditions in Jordan pairs. Math. Z. 206, 577–587 (1981)MathSciNetGoogle Scholar
  13. 13.
    K. McCrimmon.Strong prime inheritance in Jordan systems, Alg., Groups and Geometries 1, 217–234 (1984)MATHMathSciNetGoogle Scholar
  14. 14.
    K. Meyberg.Lectures on Algebras and Triple Systems. Lecture Notes, The University of Virginia, Charlottesville, (1972)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Alberto Castellón Serrano
    • 1
  • Antonio Fernández López
    • 1
  • Amable García Martín
    • 2
  • Cándido Martín González
    • 1
  1. 1.Departamento de Álgebra, Geometría y Topología Facultad de CienciasUniversidad de MálagaMálagaEspaña
  2. 2.Departamento de Matemática Aplicada E.T.S.I.I.Universidad de MálagaMálagaEspaña

Personalised recommendations