Commentarii Mathematici Helvetici

, Volume 51, Issue 1, pp 57–91 | Cite as

On cauchy-frullani integrals

  • A. M. Ostrowski
Article
  • 71 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, R. P. [1]Limits of integrals, Duke M. J.9 (1942), 10–19.MATHCrossRefMathSciNetGoogle Scholar
  2. Agnew, R. P. [2]Mean values and Frullani integrals, Proc. Am. Math. Soc.2 (1951), 237–241.MATHCrossRefMathSciNetGoogle Scholar
  3. Agnew, R. P. [3]Frullani integrals and variants of the Egoroff theorem on essentially uniform convergence, Publ. de l'Institut Math. de l'Académic Serbe des Sc. VI (1954), 12–16.MathSciNetGoogle Scholar
  4. Banach, S. [1]Sur l'équation fonctionelle f(x+y)=f(x)+f(y), Fund. Math.I (1920), 123–124.Google Scholar
  5. Cauchy, A. [1]Analyse Algébrique, Oeuvres compl. (2) III, première partie, chap. II, §III, Th. I, p. 541.Google Scholar
  6. Cauchy, A. [2]J. Ec. Pol. XIX e cah., XII, 1823; Oeuvres compl. (2) I, 335, 339.Google Scholar
  7. Cauchy, A. [3]Exercises de Mathématiques, 1827, Oeuvres compl. (2) VII, p. 157.Google Scholar
  8. Cauchy, A. [4]Ex. d'Analyse, II, 1841; Oeuvres compl. (2) XII, 416–417.Google Scholar
  9. Courant-Hilbert [1]Methoden der mathematischen Physik, 1. Auflage, Bd. 1 (1924), 393.Google Scholar
  10. Fréchet, M. [1]L'enseignement mathématique XV (1913), 390–393.Google Scholar
  11. Frullani, G. [1]Sopra Gli Integrali Definiti, Memorie della Societa Italiana delle Scienze, Modena20 (1928), pp. 448–467. See, however, for the publication date the footnote2) to sec. 1.Google Scholar
  12. Hardy, G. H. [1]A generalisation of Frullani's integral, Mess. of Math. (2)34 (1904), 11–18, 102; Collected Papers, V, pp. 371–379.Google Scholar
  13. Iyengar, K. S. K. [1]On Frullani integrals, J. Indian math. Soc. (2)4 (1940), 145–150, reprinted asMathSciNetMATHGoogle Scholar
  14. Iyengar, K. S. K. [2]On Frullani integrals, Proc. Cambridge phil. Soc.37 (1941), 9–13.MATHMathSciNetCrossRefGoogle Scholar
  15. Lerch, M. [1]Sur une extension de la formule de Frullani, Verhandl. der Prager Akad., math.-phys. Klasse I2, 1891, pp. 123–131.Google Scholar
  16. Lerch, M. [2]Généralisation du théorème de Frullani, Sitz.-Berichte der Kgl. Böhm. Ges. der Wiss., Prag, 1893.Google Scholar
  17. Ostrowski, A. M. [1]On some generalisations of the Cauchy-Frullani integral Proc. Nat. Ac. Sc., Washington,35 (1949), 612–616.MATHCrossRefMathSciNetGoogle Scholar
  18. Sierpinski, W. [1]Sur l'équation fonctionelle f(x+y)=f(x)+f(y), Fund. Math.I (1920), 116–122.Google Scholar
  19. Titchmarsh, E. C. [1]The Zeta-function of Riemann, Cambridge Tracts in Math. and math. Physics, 1930, p. 30.Google Scholar
  20. Tricomi, F. G. [1]On the theorem of Frullani, Am. Math. Monthly LVII (1951), 158–164.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1976

Authors and Affiliations

  • A. M. Ostrowski
    • 1
  1. 1.Mathematisches InstitutBasel

Personalised recommendations