Skip to main content
Log in

Contributions to affine surface area

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Representations of equiaffine surface area, due to Leichtweiß resp. Schütt & Werner, are generalized top-affine surface area measures. We provide a direct proof which shows that these representations coincide. In addition, we establish two theoremes which in particular characterize all those convex bodies geometrically for which the affine surface area is positive. The present approach also leads to proofs of the equiaffine isoperimetric inequality and the Blaschke-Santaló inequality, including the characterization of the case of equality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Aleksandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (in Russian),Uchenye Zapiski Leningrad. Gos. Univ., Math. Ser. 6 (1939), 3–35.

    Google Scholar 

  2. V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannig-faltigkeiten,J. reine angew. Math. 307/308 (1979), 309–324.

    MathSciNet  Google Scholar 

  3. I. Bárány and D. G. Larman, Convex bodies, economic cap coverings, random polytopes,Mathematika 35 (1988), 274–291.

    MATH  MathSciNet  Google Scholar 

  4. W. Blaschke,Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie, Chelsea Publishing Company, New York, 1. und 2. Auflage, 1923.

    MATH  Google Scholar 

  5. J. Borwein and D. Noll, Second order differentiability of convex functions in Banach spaces,Trans. Amer. Math. Soc. 342 (1994), 43–81.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen,Acta Math. 66 (1936), 1–47.

    Article  MathSciNet  Google Scholar 

  7. A. Deicke, Über die Finsler-Räume mitA i=0,Arch. Math. 4 (1953), 45–51.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Dolzmann and D. Hug, Equality of two representations of extended affine surface area, to appear inArch. Math., Preprint (1995).

  9. L. C. Evans and R. F. Gariepy,Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992, 268 pp.

    MATH  Google Scholar 

  10. H. Federer,Geometric Measure Theory, Springer, Berlin, 1969.

    MATH  Google Scholar 

  11. P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies II,Forum Mathematicum 5 (1993), 521–538.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. M. Gruber and M. Ludwig, A Helmholtz-Lie Type Characterization of Ellipsoids II, Preprint (1995).

  13. H. Guggenheimer, Über das Verhalten der Gaußschen Krümmung bei Affinität,Elemente der Math. 28 (1973), 42.

    MathSciNet  MATH  Google Scholar 

  14. D. Hug,Geometrische Maße in der affinen Konvexgeometrie, Dissertation, Freiburg, 1994.

  15. K. Leichtweiß,Konvexe Mengen, Springer, Hochschultext, Berlin, 1980.

    Google Scholar 

  16. K. Leichtweiß, Zur Affinoberfläche konvexer Körper,Manuscripta Math. 56 (1986), 429–464.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Leichtweiß, Über einige Eigenschaften der Affinoberfläche beliebiger konvexer Körper,Results in Math. 13 (1988), 255–282.

    MATH  Google Scholar 

  18. K. Leichtweiß, Bemerkungen zur Definition einer erweiterten Affinoberfläche von E. Lutwak,Manuscripta Math. 65 (1990), 181–197.

    Article  Google Scholar 

  19. K. Leichtweiß, On the history of the affine surface area for convex bodies,Results in Math. 20 (1991), 650–656.

    MATH  Google Scholar 

  20. K. Leichtweiß,On inner parallel bodies in the equiaffine geometry, pp. 113–123, BI Verlag Mannheim (1992), B. Funchssteiner & W. A. J. Luxemburg (eds): “Analysis and Geometry”.

    Google Scholar 

  21. An-Min Li, Udo Simon, and Guosong Zhao,Global Affine Differential Geometry of Hypersurfaces, Walter de Gruyter, Berlin, 1993.

    MATH  Google Scholar 

  22. E. Lutwak, The Brunn-Minkowski-Firey Theory II: Affine and Geominimal Surface Area, to appear in Advances in Math., Preprint (1995).

  23. E. Lutwak, Mixed affine surface area,J. Math. An. and Appl. 125 (1987), 351–360.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Lutwak, Extended affine surface area,Adv. Math. 85 (1991), 39–68.

    Article  MATH  MathSciNet  Google Scholar 

  25. E. Lutwak, Selected affine isoperimetric inequalities, inHandbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds), vol. A, North-Holland, Amsterdam, 1993, pp. 151–176.

    Google Scholar 

  26. E. Lutwak and V. Oliker, On the regularity of the solution of a generalization of the Minkowski problem,J. Differential Geometry 41 (1995), 227–246.

    MATH  MathSciNet  Google Scholar 

  27. P. McMullen, On the inner parallel body of a convex body,Israel J. Math. 19 (1974), 217–219.

    MathSciNet  Google Scholar 

  28. M. Meyer and A. Pajor, On the Blaschke-Santaló inequality,Arch. Math. 55 (1990), 82–93.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Meyer, S. Reisner, and M. Schmuckenschläger, The volume of the intersection of a convex body with its translates,Mathematika 40 (1993), 278–289.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Noll, Generalized second fundamental form for Lipschitzian hypersufaces by way of second epi derivatives,Can. Math. Bull. 35 (1992), 523–536.

    MATH  MathSciNet  Google Scholar 

  31. C. M. Petty, Affine isoperimetric problems, inDiscrete Geometry and Convexity, J. E. Goodman, E. Lutwak, J. Malkevitch, and R. Pollak (eds), Ann. New York Acad. Sci. (440), New York, 1985, pp. 113–127.

  32. A. W. Roberts and D. E. Varberg,Convex Functions, Academic Press, New York, 1973.

    MATH  Google Scholar 

  33. L. A. Santalo, Un invariante afin para los cuerpos convexos del espacio den dimensiones,Portugaliae Math. 8 (1949), 155–161.

    MATH  MathSciNet  Google Scholar 

  34. R. Schneider, Bestimmung konvexer Körper durch Krümmungsmaße,Comment. Math. Helvetici 54 (1979), 42–60.

    Article  MATH  Google Scholar 

  35. R. Schneider, Affine-invariant approximation by convex polytopes,Studia Sci. Math. Hungar. 21 (1986), 401–408.

    MATH  MathSciNet  Google Scholar 

  36. R. Schnider,Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications44, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  37. C. Schütt, On the affine surface area,Proceedings of the AMS 118 (1993), 1213–1218.

    Article  MATH  Google Scholar 

  38. C. Schütt, Random polytopes and affine surface area,Math. Nachr. 170 (1994), 227–249.

    Article  MATH  MathSciNet  Google Scholar 

  39. C. Schütt and E. Werner, The convex floating body,Math. Scand. 66 (1990), 275–290.

    MATH  MathSciNet  Google Scholar 

  40. C. Schütt and E. Werner, The convex floating body of almost polygonal bodies,Geom. Dedicata 44 (1992), 169–188.

    Article  MATH  MathSciNet  Google Scholar 

  41. C. Schütt and E. Werner, Homothetic floating bodies,Geom. Dedicata 49 (1994), 335–348.

    Article  MATH  MathSciNet  Google Scholar 

  42. E. Werner, Illumination bodies and affine surface area,Studia Math. 110 (1994), 257–269.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was processed by the author using the LATEX style filecljour1 from Springer-Verlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hug, D. Contributions to affine surface area. Manuscripta Math 91, 283–301 (1996). https://doi.org/10.1007/BF02567955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02567955

Key words

Subject Classifications

Navigation