Skip to main content

Some remarks on the characterization of the space of tangential traces ofH(rot;Ω) and the construction of an extension operator

This is a preview of subscription content, access via your institution.

References

  1. A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations, Comput. Meth. Appl. Mech. Engrg., submitted

  2. C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, inNonlinear Partial Differetial Equation and Their Applications. Collège de France Seminar Volume IX, H. Brezis and J.-L. Lions eds., Longman, Harlow, pp. 179–264 (1988)

    Google Scholar 

  3. A. Bendali, J.M. Dominguez and S. Gallic, A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains. J. Math. Anal. Appl.107, 537–560 (1985)

    MATH  Article  MathSciNet  Google Scholar 

  4. G.F.D. Duff, Differential forms in manifold with boundary, Ann. Math.56, 115–127 (1952)

    Article  MathSciNet  Google Scholar 

  5. G.F.D. Duff and D.C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. Math.56, 128–156 (1952)

    Article  MathSciNet  Google Scholar 

  6. J. Eells and Ch.B. Morrey, A variational method in the theory of harmonic integrals, Ann. Math.63, 91–128 (1956)

    Article  MathSciNet  Google Scholar 

  7. C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes station-naires et les phénomènes successifs de bifurcations, Ann. Scuola Norm. Sup. Pisa5 (IV), 29–63 (1978)

    MATH  MathSciNet  Google Scholar 

  8. K.O. Freidrichs, On differential forms on Riemannian manifolds, Comm. Pure Appl. Math.8, 551–590 (1955)

    MathSciNet  Google Scholar 

  9. M.P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc.78, 420–444 (1955)

    Article  MathSciNet  Google Scholar 

  10. V. Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds, Ann. Mat. Pura Appl.122, 159–198 (1979)

    MATH  Article  MathSciNet  Google Scholar 

  11. V. Girault and P.-A. Raviart,Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin 1986

    MATH  Google Scholar 

  12. R. Kress, Grundzüge einer Theorie verallgemeinerter harmonischer Vektorfelder, Meth. Verf. Math. Phys.2, 49–83 (1969)

    MathSciNet  Google Scholar 

  13. R. Kress, Ein kombiniertes Dirichlet-Neumannsches Randwertproblem bei harmonischen Vektorfeldern. Arch. Rational Mech. Anal.42, 40–49 (1971)

    MATH  Article  MathSciNet  Google Scholar 

  14. R. Kress, Potentialteoretische Randwertprobleme bei Tensorfeldern beliebiger Dimensionen und beliebigen Ranges, Arch. Rational Mech. Anal.47, 59–80 (1972)

    MATH  Article  MathSciNet  Google Scholar 

  15. R. Leis,Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart & Wiley, Chichester, 1986

    MATH  Google Scholar 

  16. Ch.B. Morrey, A variational method in the theory of harmonic integrals II, Amer. J. Math.78, 137–170 (1956)

    MATH  Article  MathSciNet  Google Scholar 

  17. L. Paquet, Problèmes mixtes pour le système de Maxwell, C.R. Acad. Sci. Paris289 A, 191–194 (1979)

    MathSciNet  Google Scholar 

  18. L. Paquet, Problèmes mixtes pour le système de Maxwell, Ann. Fac. Sci. Touluse Math.4, 103–141 (1982)

    MATH  MathSciNet  Google Scholar 

  19. R. Picard, Zur Theorie der harmonischen Differentialformen, Manuscr. Math.27, 31–45 (1979)

    MATH  Article  MathSciNet  Google Scholar 

  20. R. Picard, Randwertaufgaben der verallgemeinerten Potentialtheorie, Math. Meth. Appl. Sci.3, 218–228 (1981)

    MATH  MathSciNet  Google Scholar 

  21. R. Picard, On the boundary value problems of electro- and magnetostatics, Proc. Royal Soc. Edinburgh92 A, 165–174 (1982)

    MathSciNet  Google Scholar 

  22. R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z.187, 151–164 (1984)

    MATH  Article  MathSciNet  Google Scholar 

  23. J. Saranen, On generalized harmonic fields in domains with anisotropic nonhomogeneous media, J. Math. Anal. Appl.88, 104–115 (1982); Erratum: J. Math. Anal. Appl.91, 300 (1983)

    MATH  Article  MathSciNet  Google Scholar 

  24. J. Saranen, On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media, J. Math. Anal. Appl.91, 254–275 (1983)

    MATH  Article  MathSciNet  Google Scholar 

  25. K.J. Witsch, A remark on a compactness result in electromagnetic theory, Math. Meth. Appl. Sci.16, 123–129 (1993)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the grant PB93-0434 from DGI-CYT

Partially supported by H.C.M. contract CHRX 0930407

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alonso, A., Valli, A. Some remarks on the characterization of the space of tangential traces ofH(rot;Ω) and the construction of an extension operator. Manuscripta Math 89, 159–178 (1996). https://doi.org/10.1007/BF02567511

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02567511

Keywords

  • Bounded Domain
  • Extension Operator
  • Compact Riemannian Manifold
  • Unit Outward Normal Vector
  • Trace Space