A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations, Comput. Meth. Appl. Mech. Engrg., submitted
C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, inNonlinear Partial Differetial Equation and Their Applications. Collège de France Seminar Volume IX, H. Brezis and J.-L. Lions eds., Longman, Harlow, pp. 179–264 (1988)
Google Scholar
A. Bendali, J.M. Dominguez and S. Gallic, A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains. J. Math. Anal. Appl.107, 537–560 (1985)
MATH
Article
MathSciNet
Google Scholar
G.F.D. Duff, Differential forms in manifold with boundary, Ann. Math.56, 115–127 (1952)
Article
MathSciNet
Google Scholar
G.F.D. Duff and D.C. Spencer, Harmonic tensors on Riemannian manifolds with boundary, Ann. Math.56, 128–156 (1952)
Article
MathSciNet
Google Scholar
J. Eells and Ch.B. Morrey, A variational method in the theory of harmonic integrals, Ann. Math.63, 91–128 (1956)
Article
MathSciNet
Google Scholar
C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes station-naires et les phénomènes successifs de bifurcations, Ann. Scuola Norm. Sup. Pisa5 (IV), 29–63 (1978)
MATH
MathSciNet
Google Scholar
K.O. Freidrichs, On differential forms on Riemannian manifolds, Comm. Pure Appl. Math.8, 551–590 (1955)
MathSciNet
Google Scholar
M.P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc.78, 420–444 (1955)
Article
MathSciNet
Google Scholar
V. Georgescu, Some boundary value problems for differential forms on compact Riemannian manifolds, Ann. Mat. Pura Appl.122, 159–198 (1979)
MATH
Article
MathSciNet
Google Scholar
V. Girault and P.-A. Raviart,Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin 1986
MATH
Google Scholar
R. Kress, Grundzüge einer Theorie verallgemeinerter harmonischer Vektorfelder, Meth. Verf. Math. Phys.2, 49–83 (1969)
MathSciNet
Google Scholar
R. Kress, Ein kombiniertes Dirichlet-Neumannsches Randwertproblem bei harmonischen Vektorfeldern. Arch. Rational Mech. Anal.42, 40–49 (1971)
MATH
Article
MathSciNet
Google Scholar
R. Kress, Potentialteoretische Randwertprobleme bei Tensorfeldern beliebiger Dimensionen und beliebigen Ranges, Arch. Rational Mech. Anal.47, 59–80 (1972)
MATH
Article
MathSciNet
Google Scholar
R. Leis,Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart & Wiley, Chichester, 1986
MATH
Google Scholar
Ch.B. Morrey, A variational method in the theory of harmonic integrals II, Amer. J. Math.78, 137–170 (1956)
MATH
Article
MathSciNet
Google Scholar
L. Paquet, Problèmes mixtes pour le système de Maxwell, C.R. Acad. Sci. Paris289 A, 191–194 (1979)
MathSciNet
Google Scholar
L. Paquet, Problèmes mixtes pour le système de Maxwell, Ann. Fac. Sci. Touluse Math.4, 103–141 (1982)
MATH
MathSciNet
Google Scholar
R. Picard, Zur Theorie der harmonischen Differentialformen, Manuscr. Math.27, 31–45 (1979)
MATH
Article
MathSciNet
Google Scholar
R. Picard, Randwertaufgaben der verallgemeinerten Potentialtheorie, Math. Meth. Appl. Sci.3, 218–228 (1981)
MATH
MathSciNet
Google Scholar
R. Picard, On the boundary value problems of electro- and magnetostatics, Proc. Royal Soc. Edinburgh92 A, 165–174 (1982)
MathSciNet
Google Scholar
R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z.187, 151–164 (1984)
MATH
Article
MathSciNet
Google Scholar
J. Saranen, On generalized harmonic fields in domains with anisotropic nonhomogeneous media, J. Math. Anal. Appl.88, 104–115 (1982); Erratum: J. Math. Anal. Appl.91, 300 (1983)
MATH
Article
MathSciNet
Google Scholar
J. Saranen, On electric and magnetic problems for vector fields in anisotropic nonhomogeneous media, J. Math. Anal. Appl.91, 254–275 (1983)
MATH
Article
MathSciNet
Google Scholar
K.J. Witsch, A remark on a compactness result in electromagnetic theory, Math. Meth. Appl. Sci.16, 123–129 (1993)
MATH
Article
MathSciNet
Google Scholar