Commentarii Mathematici Helvetici

, Volume 46, Issue 1, pp 137–140 | Cite as

A problem of mapping a finite set into a set of positive measure

  • D. Ž. Djoković


Lebesgue Measure Unit Sphere Homogeneous Space Positive Measure Haar Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Bourbaki,Eléments des mathématiques, Intégration, Chap. 7 (Hermann et Cie, 1963).Google Scholar
  2. [2]
    C. Chevalley,Theory of Lie Groups, I (Princeton University Press, 1946).Google Scholar
  3. [3]
    H. Hadwiger,Eine Erweiterung eines Theorems von Steinhaus-Rademacher, Comment. Math. Helvet.19 (1946/47), 236–239.CrossRefMathSciNetGoogle Scholar
  4. [4]
    T. Radó andP. V. Reichelderfer,Continuous Transformations in Analysis (Springer-Verlag, 1955).Google Scholar
  5. [5]
    W. Rudin,Real and Complex Analysis (McGraw-Hill, 1966).Google Scholar

Copyright information

© Birkhäuser Verlag 1971

Authors and Affiliations

  • D. Ž. Djoković
    • 1
  1. 1.University of WaterlooOntarioCanada

Personalised recommendations