Commentarii Mathematici Helvetici

, Volume 46, Issue 1, pp 113–123 | Cite as

Toda brackets in differential topology

  • A. Kosinski


Normal Bundle Homotopy Class Homotopy Group Finite Order Characteristic Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. G. Barratt andP. J. Hilton,On join operations in homotopy groups, Proc. London Math. Soc. (3),3 (1953), 430–445.zbMATHMathSciNetGoogle Scholar
  2. [2]
    M. G. Barratt andM. Mahowald,The metastable homotopy of 0(n). Bull. Amer. Math. Soc.70 (1964), 758–760.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    I. M. James,On spaces with a multiplication, Pacific J. Math.7 (1957), 1083–1100.zbMATHMathSciNetGoogle Scholar
  4. [4]
    M. A. Kervaire,An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math.69 (1959), 345–365.CrossRefMathSciNetGoogle Scholar
  5. [5]
    M. A. Kervaire andJ. W. Milnor,Groups of homotopy spheres, I, Ann. of Math.77 (1963), 504–537.CrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Kosinski,On the inertia group of π-manifolds, Amer. J. Math.89 (1967), 227–248.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    H. Toda,p-primary components of homotopy groups, IV. Memoirs Univ. of Kyoto, series A,32 (1959), 297–332.zbMATHMathSciNetGoogle Scholar
  8. [8]
    J. M. Boardman andB. Steer,On Hopf invariants, Commentari Math. Helv.42 (1967), 180–221.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1971

Authors and Affiliations

  • A. Kosinski
    • 1
  1. 1.Institute for Advanced Study and Rutgers UniversityUSA

Personalised recommendations