Skip to main content
Log in

The semiregular polytopes

  • Published:
Commentarii Mathematici Helvetici

Abstract

A convexd-polytype inE d is called semiregular, if its facets are regular and its vertices equivalent. A list of semiregular polytopes ford≥4 is known since 1900. Recently it has been proved by П. В. Макаров [сб. Вопр. дискр. геом., Мат. исслед. ИМ АН Молд. ССР вып. 103, C. 139–150, Кищинев 1988], that this list is complete ford=4. We present here a simple proof for that this list is complete in any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blind,Konvexe Polytope mit kongruenten regulären (n−1)-Seiten im R n (n≥4). Comment. Math. Helv.54, 304–308 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Blind,Konvexe Polytope mit regulären Facetten im R n (n≥4). InContributions to Geometry, J. Tölke and J. M. Wills eds. Birkhäuser, Basel 1979.

    Google Scholar 

  3. G. Blind undR. Blind,Die konvexen Polytope im R 4, bei denen alle Facetten reguläre Tetraeder sind. Mh. Math.89, 87–93 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Blind undR. Blind,Über die Symmetriegruppen von regulärseitigen Polytopen, Mh. Math.108, 103–114 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. S. M. Coxeter,Regular Polytopes. New York 1973.

  6. T. Gosset,On the regular and semiregular figures in space of n dimensions, Mess. Math.29, 43–48 (1900).

    Google Scholar 

  7. B. Grünbaum,Convex Polytopes, London-New York-Sydney 1967.

  8. П. В. Макаров,О выводе четыерехмерных полуправилЯных многогранников (How to deduce the 4-dimensional semiregular polytopes). сб. Вопр. дискр. геом., Мат. исслед. ИМ АН Молд. ССР вып. 103, C. 139–150, Кишинев 1988.

    Google Scholar 

  9. V. A. Zalgaller,Convex polyhedra with regular faces. Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, Vol. 2; Consultants Bureau, New York 1969.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blind, G., Blind, R. The semiregular polytopes. Comment. Math. Helv. 66, 150–154 (1991). https://doi.org/10.1007/BF02566640

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02566640

Keywords

Navigation