Abstract
A convexd-polytype inE d is called semiregular, if its facets are regular and its vertices equivalent. A list of semiregular polytopes ford≥4 is known since 1900. Recently it has been proved by П. В. Макаров [сб. Вопр. дискр. геом., Мат. исслед. ИМ АН Молд. ССР вып. 103, C. 139–150, Кищинев 1988], that this list is complete ford=4. We present here a simple proof for that this list is complete in any dimension.
Similar content being viewed by others
References
R. Blind,Konvexe Polytope mit kongruenten regulären (n−1)-Seiten im R n (n≥4). Comment. Math. Helv.54, 304–308 (1979).
R. Blind,Konvexe Polytope mit regulären Facetten im R n (n≥4). InContributions to Geometry, J. Tölke and J. M. Wills eds. Birkhäuser, Basel 1979.
G. Blind undR. Blind,Die konvexen Polytope im R 4, bei denen alle Facetten reguläre Tetraeder sind. Mh. Math.89, 87–93 (1980).
G. Blind undR. Blind,Über die Symmetriegruppen von regulärseitigen Polytopen, Mh. Math.108, 103–114 (1989).
H. S. M. Coxeter,Regular Polytopes. New York 1973.
T. Gosset,On the regular and semiregular figures in space of n dimensions, Mess. Math.29, 43–48 (1900).
B. Grünbaum,Convex Polytopes, London-New York-Sydney 1967.
П. В. Макаров,О выводе четыерехмерных полуправилЯных многогранников (How to deduce the 4-dimensional semiregular polytopes). сб. Вопр. дискр. геом., Мат. исслед. ИМ АН Молд. ССР вып. 103, C. 139–150, Кишинев 1988.
V. A. Zalgaller,Convex polyhedra with regular faces. Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, Vol. 2; Consultants Bureau, New York 1969.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Blind, G., Blind, R. The semiregular polytopes. Comment. Math. Helv. 66, 150–154 (1991). https://doi.org/10.1007/BF02566640
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02566640