Skip to main content
Log in

Jacquet functors and unrefined minimal K-types

  • Published:
Commentarii Mathematici Helvetici


The notion of an unrefined minimal K-type is extended to an arbitrary reductive group over a non archimedean local field. This allows one to define the depth of a representation. The relationship between unrefined minimal K-types and the functors of Jacquet is determined. Analogues of fundamental results of Borel are proved for representations of depth zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • [BZ]J. Bernstein andA. Zelevinsky,Representations of the group GL(n,F) where F is a non-archimedean local field, Russian Math. Surveys 31:3 (1976), 1–68.

    Article  MATH  Google Scholar 

  • [B1]A. Borel,Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math.35 (1976), 233–259.

    Article  MathSciNet  MATH  Google Scholar 

  • [B2]A. Borel,Linear algebraic groups, Graduate Texts in Mathematics, Springer-Verlag, 1991.

  • [BT1]F. Bruhat andJ. Tits,Groupes réductifs sur un corps local I, Publ. Math. I.H.E.S.41 (1972).

  • [BT2]F. Bruhat andJ. Tits,Groupes réductifs sur un corps local II, Publ. Math. I.H.E.S.60 (1984).

  • [BK1]C. Bushnell andP. Kutzko,The admissible dual of GL(N) via compact open subgroups, Princeton University Press, 1993.

  • [BK2]C. Bushnell andP. Kutzko,Smooth representations of reductive p-adic groups (preprint).

  • [Car]P. Cartier,Representations of p-adic groups: A survey, Proc. of A.M.S. Symposia in Pure Math. XXXIII (part 1), 111–155.

  • [Cas]W. Casselman,Introduction to the theory of admissible representations of p-adic reductive groups (preprint).

  • [HC]Harish-Chandra,Eisenstein series over finite fields, Collected Papers, Springer-Verlag, New York, 1984.

    Google Scholar 

  • [HL]R. Howlett andG. Lehrer,On Harish-Chandra induction and restriction for modules of Levi subgroups, Jour. of Algebra165 (1994), 172–183.

    Article  MathSciNet  MATH  Google Scholar 

  • [K]G. Kempf,Instability in invariant theory, Ann. Math.108 (1978), 299–316.

    Article  MathSciNet  Google Scholar 

  • [Mr1]L. Morris,P-cuspidal representations of level one, Proc. LMS (3rd series)58 (1989), 550–558.

    MATH  Google Scholar 

  • [Mr2]L. Morris,Tamely ramified intertwining algebras, Invent Math.114 (1993), 1–54.

    Article  MathSciNet  MATH  Google Scholar 

  • [MP]A. Moy andG. Prasad,Unrefined minimal K-types for p-adic groups, Invent. Math.116 (1994), 393–408.

    Article  MathSciNet  MATH  Google Scholar 

  • [R]G. Rousseau,Immeubles spheriques et theorie des invariants, C. R. Acad. Sci. (Paris)286 (1978), A247-A250.

    MathSciNet  Google Scholar 

  • [Sh]T. Shintani,On certain square integrable unitary representations of some p-adic linear groups, Jour. Math. Soc. Japan20 (1968), 522–565.

    Article  MathSciNet  MATH  Google Scholar 

  • [Si]A. Silberger,Introduction to harmonic analysis on reductive p-adic groups, Princeton University Press, Princeton, 1979.

    MATH  Google Scholar 

  • [T]J. Tits,Reductive groups over local fields, Proc. of A.M.S. Symposia in Pure Math. XXXIII (part 1), 29–69.

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Moy, A., Prasad, G. Jacquet functors and unrefined minimal K-types. Commentarii Mathematici Helvetici 71, 98–121 (1996).

Download citation

  • Received:

  • Issue Date:

  • DOI: