Skip to main content
Log in

Convex functionals and generalized harmonic maps into spaces of non positive curvature

  • Published:
Commentarii Mathematici Helvetici

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  • [A1]Al'ber, S. I.,On n-dimensional problems in the calculus of variations in the large, Sov. Math. Dokl.5 (1964), 700–804.

    Google Scholar 

  • [A2]Al'ber, S. I.,Spaces of mappings into a manifold with negative curvature, Sov. Math. Dokl.9 (1967), 6–9.

    Google Scholar 

  • [At]Attouch, H.,Variational convergence for functions and operators, Pitman, 1984.

  • [C1]Corlette, K.,Flat G-Bundles with canonical metrics, J. Diff. Geom.28 (1988), 361–382.

    MathSciNet  Google Scholar 

  • [C2]Corlette, K.,Archimedean superrigidity and hyperbolic geometry, Ann. Math.135 (1992), 165–182.

    Article  MathSciNet  Google Scholar 

  • [D]Donaldson, S.,Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc.55 (1987), 127–131.

    MathSciNet  Google Scholar 

  • [dM]dal Maso, G.,An introduction to Γ-convergence, Birkhäuser, 1993.

  • [DO]Diederich, K. andOhsawa, T.,Harmonic mappings and disk bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci.21 (1985), 819–833.

    MathSciNet  Google Scholar 

  • [ES]Eells, J. andSampson, J.,Harmonic mappings of Riemannian manifolds, Am. J. Math.85 (1964), 109–160.

    Article  MathSciNet  Google Scholar 

  • [GS]Gromov, M. andSchoen, R.,Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. IHES76 (1992), 165–246.

    MathSciNet  Google Scholar 

  • [H]Hartman, P.,On homotopic harmonic maps, Can. J. Math.19 (1967), 673–687.

    MathSciNet  Google Scholar 

  • [J]Jost, J.,Equilibrium maps between metric spaces, Calc. Var.2 (1994), 173–204.

    Article  MathSciNet  Google Scholar 

  • [JY1]Jost, J. andYau, S. T.,The strong rigidity of locally symmetric complex manifolds of rank one and finite volume, Math. Ann.271 (1985), 143–152.

    Article  MathSciNet  Google Scholar 

  • [JY2]Jost, J. andYau, S. T.,On the rigidity of certain discrete groups and algebraic varieties, Math. Ann.278, (1987) 481–496.

    Article  MathSciNet  Google Scholar 

  • [JY3]Jost, J. andYau, S. T.,Harmonic maps and group representations, in: B. Lawson and K. Tenenblat (eds.),Differential Geometry and Minimal Submanifolds, Longman Scientific, 1991, pp. 241–260.

  • [JY4]Jost, J. andYau, S. T.,Harmonic maps and superrigidity, Proc. Sym. Pure Math.54, Part I (1993), 245–280.

    MathSciNet  Google Scholar 

  • [JZ1]Jost, J. andZuo, K., Harmonic maps andSl(r,ℂ)-representations ofπ 1 of quasi projective manifolds, J. Alg. Geom., to appear.

  • [JZ2]Jost, J. andZuo, K., Harmonic maps into Tits buildings and factorization of non rigid and non arithmetic representations ofπ 1 of algebraic varieties.

  • [KS]Korevaar, N. andSchoen, R.,Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom.1 (1993), 561–569.

    MathSciNet  Google Scholar 

  • [K]Kourouma, M.,Harmonic sections of Riemannian fiber bundles.

  • [La]Labourie, F.,Existence d'applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. AMS111 (1991), 877–882.

    Article  MathSciNet  Google Scholar 

  • [N]Nikolaev, I.,Synthetic methods in Riemannian geometry, Lecture Notes.

  • [Re]Reshetnyak, Y. G.,Nonexpanding maps in a space of curvature no greater than K, Siberian Math. Journ.9 (1968), 683–689.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Jost, J. Convex functionals and generalized harmonic maps into spaces of non positive curvature. Commentarii Mathematici Helvetici 70, 659–673 (1995).

Download citation

  • Received:

  • Issue Date:

  • DOI: