Antonie van Leeuwenhoek

, Volume 41, Issue 1, pp 287–307

Improvements of the membrane filter method for DNA:rRNA hybridization

  • J. De Ley
  • J. De Smedt
Article

Abstract

We describe and recommend the following improvements of DNA:rRNA membrane filter hybridization methods. One of our aims was to avoid DNA release from filter discs during hybridization.
  1. 1.

    Our hybridization conditions are 2 SSC in aq. dest., with 20% formamide, 50 C, overnight for 16 hr.

     
  2. 2.

    Duplexing is over in 8–10 hr.

     
  3. 3.

    Formamide has to be very pure (O.D.≤0.2/cm light path at 270 nm).

     
  4. 4.

    RNAase treatment: 250 μg/5 ml 2 SSC/filter at 37 C for 1 hr.

     
  5. 5.

    Our conditions for stepwise thermal denaturation are: 5°C steps from 50C to 90C in 1.5 SSC in 20% formamide.

     
  6. 6.

    Single-stranded DNA, fixed on membrane filters, and stored in vacuo at 4C, can be used reliably for hybridization for up to 20 months.

     
  7. 7.

    Concentrated DNA in 0.1 SSC, quick-frozen at −50 C and stored at −90 C for up to 2 years can be used for hybridization without much change.

     
  8. 8.

    A CsCl gradient purification step yields much purer DNA, but increases the release of DNA from filters by about 20%. Filters with 20% more DNA is a compensation.

     
  9. 9.

    rRNA can be stored for 20 months in SSC or 2 SSC at −12C without changing the hybridization results.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, J. O. 1970. Examination of an equilibrium interpretation of deoxyribonucleic acid-ribonucleic acid hybridization data.—Biochem. J.116: 223–228.PubMedGoogle Scholar
  2. Bishop, J. O., Robertson, F. W., Burns, J. A. andMelli, M. 1969. Methods for the analysis of deoxyribonucleic acid-ribonucleic acid hybridization data.—Biochem. J.115: 361–370.PubMedGoogle Scholar
  3. Bonner, J., Kung, G. andBekhor, I. 1967. A method for the hybridization of nucleic acid molecules at low temperature.—Biochemistry6: 3650–3653.PubMedCrossRefGoogle Scholar
  4. Burton, K. 1956. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid.—Biochem. J.62: 315–323.PubMedGoogle Scholar
  5. Crombach, W. H. J. 1972. DNA base composition of soil arthrobacters and other coryneforms from cheese and sea fish.—Anttonie van Leeuwenhoek38: 105–120.CrossRefGoogle Scholar
  6. Crombach, W. H. J. 1973. Deep-freezing of bacterial DNA for thermal denaturation and hybridization experiments.—Antonie van Leeuwenhoek39: 249–255.PubMedGoogle Scholar
  7. Daniel, J. C., Greene, R. F., Mitchell, R. A. andFlickinger, R. A. 1970. An improved method of detecting DNA-RNA hybrids bound to nitrocellulose filters.—Anal. Biochem.37: 330–332.PubMedCrossRefGoogle Scholar
  8. De Ley, J. 1971. Hybridization of DNA, p. 311–329.In Norris, J. R. and Ribbons, D. W., (eds.), Methods in Microbiology Vol. 5A.—Academic Press, London and New York.Google Scholar
  9. De Ley, J., Cattoir, H. andReynaerts, A. 1970. The quantitative measurement of DNA hybridization from renaturation rates.—Eur. J. Biochem.12: 133–142.PubMedCrossRefGoogle Scholar
  10. De Ley, J. andFriedman, S. 1964. Deoxyribonucleic acid hybrids of acetic acid bacteria. —J. Bacteriol.88: 937–945.Google Scholar
  11. De Ley, J., Park, I. W., Tijtgat, R. andVan Ermengem, J. 1966. DNA homology and taxonomy ofPseudomonas andXanthomonas.—J. Gen. Microbiol.42: 43–56.PubMedGoogle Scholar
  12. De Ley, J. andTijtgat, R. 1970. Evaluation of membrane filter methods for DNA-DNA hybridizations.—Antonie van Leeuwenhoek36: 461–474.PubMedCrossRefGoogle Scholar
  13. Fry, M. andArtman, M. 1969. Deoxyribonucleic acid-ribonucleic acid hybridizations. —Biochem. J.115: 287–294.PubMedGoogle Scholar
  14. Gillespie, D. 1968. The formation and detection of DNA: RNA hybrids, p. 641–668.In Colowick, S.P. and Kaplan, N.O., (Eds.), Methods in Enzymology, Vol. XII B.—Academic Press, New York and London.Google Scholar
  15. Gillespie, S. andGillespie, D. 1971. Ribonucleic acid-deoxyribonucleic acid hybridization in aqueous solutions and in solutions containing formamide.—Biochem. J.125: 481–487.PubMedGoogle Scholar
  16. Gillespie, D. andSpiegelman, S. 1965. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane.—J. Mol. Biol.12: 829–842.PubMedGoogle Scholar
  17. Gillis, M., De Ley, J. andDe Cleene, M. 1970. The determination of molecular weight of bacterial genome DNA from renaturation rates.—Eur. J. Biochem.12: 143–153.PubMedCrossRefGoogle Scholar
  18. Grienenberger, J. M. etSimon, D. 1972. Etude de la structure et de la dégradation des acides ribonucléiques ribosomaux de quelques bactéries du genreAgrobacterium.—C.R. Acad. Sci. (Paris)274: 1399–1402.Google Scholar
  19. Hayashi, M. andSpiegelman, S. 1961. The selective synthesis of informational RNA in bacteria.—Proc. Nat. Acad. Sci. U.S.A.47: 1564–1580.CrossRefGoogle Scholar
  20. Heberlein, G. T., De Ley, J. andTytgat, R. 1967. Deoxyribonucleic acid homology and taxonomy ofAgrobacterium, Rhizobium andChromobacterium.—J. Bacteriol.94: 116–124.PubMedGoogle Scholar
  21. Kirby, K. S. 1957. A new method for the isolation of deoxyribonucleic acids: evidence on the nature of bonds between deoxyribonucleic acid and protein.—Biochem. J.66: 495–504.PubMedGoogle Scholar
  22. Kirby, K. S., Fox-Carter, E. andGuest, M. 1967. Isolation of deoxyribonucleic acid and ribosomal ribonucleic acid from bacteria.—Biochem. J.104: 258–262.PubMedGoogle Scholar
  23. Kourilsky, Ph., Manteuil, S., Zamansky, M. H. andGros, F. 1970. DNA-RNA hybridization at low temperature in the presence of urea.—Biochem. Biophys. Res. Comm.41: 1080–1087.PubMedCrossRefGoogle Scholar
  24. Le Goff, L. 1968. Acides ribonucléiques des bactéries du crown-gallAgrobacterium tumefaciens (Smith et Town) Conn. exposées au borate de sodium.—Ann. Inst. Pasteur115: 232–248.Google Scholar
  25. Lochhead, A. G. andBurton, M. O. 1954. Qualitative studies of soil microorganisms. XII. Characteristics of vitamin-B12-requiring bacteria.—Can. J. Microbiol.1: 319–330.CrossRefGoogle Scholar
  26. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. —J. Mol. Biol.3: 208–218.CrossRefGoogle Scholar
  27. McConaughy, B. L., Laird, C. D. andMcCarthy, B. J. 1969. Nucleic acid reassociation in formamide.—Biochemistry8: 3289–3295.PubMedCrossRefGoogle Scholar
  28. McConkey, E. H. 1968. The fractionation of RNA's by sucrose gradient centrifugation, p. 620–634.In S. P. Colowick and N. O. Kaplan, (Eds), Methods in Enzymology, Vol. XII. —Academic Press, New York and London.Google Scholar
  29. Melli, M., Whitfield, C., Rao, K. V., Richardson, M. andBishop, J. O. 1971. DNA-RNA hybridization in vast DNA excess.—Nature New Biol.231: 8–12.PubMedGoogle Scholar
  30. Meijs, W. H. andSchilperoort, R. A. 1971. Determination of the amount of DNA on nitrocellulose membrane filters.—FEBS Letter12: 166–168.CrossRefGoogle Scholar
  31. Midgley, J. E. M. 1965. Effects of different extraction procedures on the molecular characteristics of bacterial ribosomal ribonucleic acid.—Biochim. Biophys. Acta95: 232–243.PubMedGoogle Scholar
  32. Moore, R. L. andMcCarthy, B. J. 1967. Comparative study of ribosomal ribonucleic acid cistrons in Enterobacteria and Myxobacteria.—J. Bacteriol.94: 1066–1074.PubMedGoogle Scholar
  33. Noll, H. andStutz, E. 1968. The use of sodium and lithium dodecyl sulfate in nucleic acid isolation, p. 129–155.In S. P. Colowick and N. O. Kaplan, (eds.), Methods in Enzymology, Vol. XIIB.—Academic Press, New York and London.Google Scholar
  34. Nygaard, A. P. andHall, B. D. 1963. A method for the detection of RNA-DNA complexes. —Biochem. Biophys. Res. Comm.12: 98–104.PubMedCrossRefGoogle Scholar
  35. Nygaard, A. P. andHall, B. D. 1964. Formation and properties of RNA-DNA complexes. —J. Mol. Biol.9: 125–142.CrossRefPubMedGoogle Scholar

Copyright information

© H. Veenman & Zonen B.V. Publishers 1975

Authors and Affiliations

  • J. De Ley
    • 1
  • J. De Smedt
    • 1
  1. 1.Laboratory for Microbiology and Microbial Genetics, Faculty of SciencesState UniversityGentBelgium

Personalised recommendations