Skip to main content

A characteristic property ofA 8

This is a preview of subscription content, access via your institution.

References

  1. Higman, G., Finite groups in which every element has prime power order,J. London Math. Soc.,127(1957), 335–342.

    Article  MathSciNet  Google Scholar 

  2. Brandl, R., Finite groups all of whose elements are of prime power order,Boll. U.M.I., (5) 18-A(1981), 491–493.

    MathSciNet  Google Scholar 

  3. Shi Wujie and Yang Wenze, A new characterization ofA 5 and the finite groups in which every non-identity element has prime order,J. Southwest-China Teachers College (Ser. B) (Chinese) No. 1(1984), 36–40.

    Google Scholar 

  4. Shi Wujie, A characteristic property ofPSL(2,7),J. Austral. Math. Soc. (Ser.A),36(1984), 354–356.

    Article  MATH  MathSciNet  Google Scholar 

  5. Shi Wujie, A characteristic property ofJ 1 andPSL(2,2n), to be published in Advances in Mathematics (Chinese).

  6. Shi Wujie, A characterization of some projective special linear groups,J. Math. (Chinese),5(1985), 191–200.

    MATH  Google Scholar 

  7. Brandl, R. and Shi Wujie, Finite groups whose element orders are consecutive integers, to appear inJ. Algebra.

  8. D. Gorenstein, Finite Groups, Harper and Row, London/New York, 1968.

    MATH  Google Scholar 

  9. Passman, D. S., Permutation Groups,New York, 1968.

  10. Williams, J. S., Prime graph components of finite groups,J. Alg.,69(1981), 487–513.

    Article  MATH  Google Scholar 

  11. Suzuki, M., On a class of doubly transitive groups.Ann. Math.,75(1962), 105–145.

    Article  Google Scholar 

  12. Steinberg, R., Automorphism of finite linear groups,Canad. J. Math.,12(1960), 606–615.

    MATH  MathSciNet  Google Scholar 

  13. Kurzweil, H., Endliche Gruppen, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    MATH  Google Scholar 

  14. Fletcher, L. R., Stellmacher, B. and Stewart, W.B., Endliche Gruppen die kein Element der Ordnung 6 enthalten,Quart. J. Math., Oxford Ser., (2)28(1977), 143–154.

    Article  MATH  MathSciNet  Google Scholar 

  15. Gorenstein, D., Finite Simple Groups, Plenum Press, New York and London, 1982.

    MATH  Google Scholar 

  16. Benson, D., The Loewy structure of the projective indecomposable modules forA 8 in characteristic 2,Comm. Alg.,11 (1983), 1395–1432.

    MATH  MathSciNet  Google Scholar 

  17. Huppert, B., Endliche Gruppen I, Springer Verlag, Berlin-Heidelberg-New York, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wujie, S. A characteristic property ofA 8 . Acta Mathematica Sinica 3, 92–96 (1987). https://doi.org/10.1007/BF02564949

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02564949

Keywords