Skip to main content
Log in

Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2

  • Published:
Commentarii Mathematici Helvetici

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. G. André etS. Aubry,Analyticity breaking and Anderson localization in incommensurate lattices, Annals of the Israel Phys. Soc.,3 (1979), 133–164.

    Google Scholar 

  2. M. M. Benderskii etL. A. Pastur,On the spectrum of the one dimensional Schrödinger equation with random potential, Math. U.S.S.R. Sbornik,11 (1970), 245–256.

    Article  MathSciNet  Google Scholar 

  3. Y. Derriennic,Sur le théorème ergodique sous additif, C.R. Acad. Sc. Paris,281 (1975), 985–988.

    MathSciNet  Google Scholar 

  4. M. R. Herman,Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.E.S.,49 (1979), 5–233.

    MathSciNet  Google Scholar 

  5. —,Construction d’un difféomorphisme minimal d’entropie topologique non nulle, Ergod, Th. and Dynam. Sys.,1 (1981), 65–76.

    MathSciNet  Google Scholar 

  6. M. R. Herman,Démonstration du théorème des courbes invariantes, manuscrit, à paraître, et “théorèmes des fonctions implicites dans les espaces de Fréchet et quelques applications aux systèmes dynamiques” cours à l’E.N.S. à paraître à Astérisque.

  7. L. Hörmander,Complex analysis in several variables, D. Van Nostrand, New York (1966).

    MATH  Google Scholar 

  8. R. A. Johnson,Ergodic theory and linear differential equations, J. Diff. Equations,28 (1978), 23–34.

    Article  Google Scholar 

  9. —,On a Floquet theory for two-dimensional almost periodic linear systems, J. Diff. Equations,37 (1980), 184–205.

    Article  Google Scholar 

  10. —,The recurrent Hill’s equation J. Diff. Equations,46 (1982), 165–193.

    Article  Google Scholar 

  11. — etJ. Moser,The rotation number for almost periodic potentials, Com. in Math. Phy.,84 (1982), 403–438.

    Article  MathSciNet  Google Scholar 

  12. P. Lelong,Fonctionnelles analytiques et fonctions entières (n-variables), Presse Univ. de l’Univ. de Montréal (1968).

  13. V. Millionščikov,Proof of the existence… quasi-periodic coefficients Diff. Equations,5 (1969), 1475–8; voir aussi,Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients, Diff. Equations,4 (1968), 203–205.

    Google Scholar 

  14. J. Moser,Convergent series expansions for quasi periodic motions Math. Annalen,169 (1967), 136–176.

    Article  Google Scholar 

  15. D. Ruelle,Ergodic theory of differentiable dynamical systems, Publ. Math. I.H.E.S.,50 (1979), 27–58

    MathSciNet  Google Scholar 

  16. W. Rudin,Fourier Analysis on groups, J. Wiley et Sons, New York (1962).

    MATH  Google Scholar 

  17. H. Rüssmann,On the one-dimensional Schrödinger equation with a quasi-periodic potential, Annals of the New-York Acad Sci.,357 (1980), 90–107.

    Article  Google Scholar 

  18. M. Shub,Stabilité globale des systèmes dynamiques, Société Math. Fr., Astérisque no56 (1978).

  19. R. E. Vinograd,A problem by N. P. Erugin, Diff. Equations,11 (1974), 474–478.

    Google Scholar 

  20. E. Zenhder,A simple proof of a generalisation of a theorem of C. L. Siegel, Springer Lect. notes in Math. no579, Springer Verlag (1977), 855–866.

  21. J. Avron andB. Simon,Singular continous spectrum for a class of almost periodic Jacobi matrices, Bull. Amer. Math. Soc.,6 (1982), 81–83.

    MathSciNet  Google Scholar 

  22. H. H. Hardy andJ. E. Littlewood,Notes on the theory of series XXIV. A curious power series, Proc. Cambridge Philos. Soc.,42 (1946), 85–90.

    MathSciNet  Google Scholar 

  23. J. F. Koksma,A Diophantine property of some summable functions, J. Indian Math. Soc. (N.S.),15 (1951), 87–96.

    MathSciNet  Google Scholar 

  24. M. Mañé,Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Transactions A.M.S.,229 (1977), 351–370.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, M.R. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Commentarii Mathematici Helvetici 58, 453–502 (1983). https://doi.org/10.1007/BF02564647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02564647

Navigation