Skip to main content
Log in

Bayesian inference in location-scale distributions with independent bivariate priors

  • Published:
Test Aims and scope Submit manuscript

Summary

Motivated by attractive features of inferences based on heavy-tailed distributions, we develop Bayesian inference for the location parameter of a family of location-scaled distributions, which are shifted and scaled Studentt and normal distributions. The family of prior distributions utilized to the unknown location and squared-scale consists of independent Studentt and inverted gamma distributions. When observations are sampled from at distribution, the likelihood estimators are intractable. Thus, we use MML (modified maximum likelihood) estimators instead to develop Bayesian inference. Bayesian estimators are defined by modes of posterior densities and called HPD (highest posterior density) estimators. The proposed estimators, especially the estimators arising from at distribution, are clearly superior. They adjust automatically to the sample dispersion, ignore inconsistent information, and are rather insensitive to outliers. The posterior density of the location parameter may be bimodal. Posterior bimodality indicates some conflicts between the two sources of information: the sample and the prior knowledge. We also report the results of simulation studies that point toward overall superiority of the proposed estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angers, J. F. and Berger, J. O. (1991). Robust hierarchical Bayesian estimation of exchangeable means.Canadian J. Statist. 19, 39–56.

    MathSciNet  Google Scholar 

  • Barnett, V. D. (1966). Order statistics estimators of the location of the Cauchy distribution.J. Amer. Statist. Assoc. 61, 1205–1218.

    Article  MathSciNet  Google Scholar 

  • Berger, J. O. (1980). A robust generalized Bayes estimator and confidence region for a multivariate normal mean.Ann. Statist. 8, 716–761.

    MathSciNet  Google Scholar 

  • Bhattacharyya, G. K. (1985). The asymptotic of maximum likelihood and related estimators based on Type II censored data.J. Amer. Statist. Assoc. 80, 398–404.

    Article  MathSciNet  Google Scholar 

  • Bian, G. (1989). Bayesian statistical analysis with independent bivariate priors for the normal location and scale parameters. Ph.D. Thesis, University of Minnesota.

  • Bian, G. (1995). Robust Bayesian estimators in a one-way ANOVA model.Test 4, 115–135.

    MathSciNet  Google Scholar 

  • Bian, G. and Dickey, J. M. (1996). Properties of multivariate Cauchy and poly-Cauchy distributions with Bayesiang-prior applications. Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner (D. A. Berry, K. M. Chaloner and J. K. Geweke, eds.) New York: Wiley, 299–310.

    Google Scholar 

  • Bian, G. and Tiku, M. L. (1996). Bayesina inference based on robust priors and MML estimators: Part I, symmetric location-scale distributions. Statistics (to appear).

  • Carlin, B. P. and Polson, N. G. (1991). Inference for nonconjugate Bayesian models using the Gibbs sampler.Canadian J. Statist. 19, 399–406.

    MathSciNet  Google Scholar 

  • Dawid, A. P. (1973). Posterior expectations for large observations.Biometrika 60, 664–667.

    Article  MathSciNet  Google Scholar 

  • DeFinetti, B. (1961). The Bayesian approach to the rejection of outliers. Proceedings of the fourth Berkeley Symposium on Probability and Statistics (Vol. 1). Berkeley, University of California Press, 199–210.

    Google Scholar 

  • Dickey, J. M. (1968). Three multimensional-integral identities with Bayesian applications.Ann. Statist. 39, 1615–1627.

    MathSciNet  Google Scholar 

  • Dickey, J. M. (1974). Bayesian alternatives to the F-test and least-squares estimate in the normal linear model. Studies in Bayesian Econometrics and Statistics (S. E. Fienberg and A. Zellner, eds.), Amsterdam: North-Holland, 515–554.

    Google Scholar 

  • Dreze, J. H. (1977). Bayesian regression analysis using poly-t densities. J. Econometrics 6, 329–354.

    Article  MathSciNet  Google Scholar 

  • Dreze, J. H. and Richard, J-F. (1983). Bayesian analysis of simultaneous equation system. Handbook of Econometrics 1 (Z. Glriliches and M. D. Intriligator, eds.). Amsterdam: North-Holland, 577–598.

    Google Scholar 

  • Gelfand, A. E., Hills, S. E., Racine-Poon, A. and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data model using Gibbs sampling.J. Amer. Statist. Assoc. 85, 972–985.

    Article  Google Scholar 

  • Hill, B. M. (1974). On coherence inadmissibility and inference about many parameters in the theory of least squares. Studies in Bayesian Econometrics and Statistics (S. E. Fienberg and A. Zellner, eds.). Amsterdam: North-Holland, 555–584.

    Google Scholar 

  • Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimators for the linear model.J. Roy. Statist. Soc. B 34, 1–41.

    MathSciNet  Google Scholar 

  • Lucas, T. W. (1993). When is conflict normal?J. Amer. Statist. Assoc. 88, 1433–1437.

    Article  MathSciNet  Google Scholar 

  • O’Hagan, A. (1979). On outlier rejection phenomena in Bayes inference.J. Roy. Statist. Soc. B 41, 358–367.

    MathSciNet  Google Scholar 

  • O’hagan, A. (1988). Modelling with heavy tails.Bayesian Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.). Oxford: University Press, 345–359.

    Google Scholar 

  • O’Hagan, A. (1990). Outliers and credence for location parameter inference.J. Amer. Statist. Assoc. 85, 172–176.

    Article  MathSciNet  Google Scholar 

  • Pericchi, L. R. and Smith, A. F. M. (1992). Exact and approximate posterior moments for normal location parameter.J. Roy. Statist. Soc. B. 54, 793–804.

    MathSciNet  Google Scholar 

  • Raiffa, H. and Schlaifer, R. (1961).Applied Statistical Decision Theory Boston: Harvard University.

    Google Scholar 

  • Ramsey, J. O. and Novick, M. R. (1980). PLU robust Bayesian decision theory: point estimation.J. Amer. Statist. Assoc. 75, 401–407.

    Google Scholar 

  • Richard, J.-F. and Tompa, H. (1980). On the evaluation of poly-t density function.J. Econometrics 12, 335–351.

    Article  MathSciNet  Google Scholar 

  • Stone, M. (1964). Comments on a posterior distribution of Geisser and Cornfield.J. Roy. Statis. Soc. B 26, 274–276.

    Google Scholar 

  • Tiao, G.C. and Zellner, A. (1964). On the Bayesian estimation of multivariate regression.J. Roy. Statist. Soc. B 26, 277–285.

    MathSciNet  Google Scholar 

  • Tierney, L. and Kadane, J. B. (1986). Accurate approximation for posterior moments and marginal densities.J. Amer. Statist. Assoc. 81, 82–86.

    Article  MathSciNet  Google Scholar 

  • Tiku, M. L. (1982). Testing linear contrasts of means in experimental design without assuming normality and homogeneity of variances.Biometrical J. 24, 613–627 (invited paper).

    MathSciNet  Google Scholar 

  • Tiku, M. L. and Kumra, S. (1981). Expected values and variances and covariances of order statistics for a family of symmetric distributions (Student’st). Selected Tables in Mathematical Statistics 8, 141–270. The American Math. Society: Providence, Rhode Island.

    Google Scholar 

  • Tiku, M. L., Tan, W. Y. and Balakrishnan, N. (1986).Robust Inference. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Tiku, M. L. and Suresh, R. D. (1992). A new method of estimation for location and scale parameters.J. Statist. Plann. and Inf. 30, 281–292.

    Article  MathSciNet  Google Scholar 

  • Vaughan, D.C. (1992). On the Tiku-Suresh method of estimation.Commun. Statist-Theory Meth. 21, 451–469.

    MathSciNet  Google Scholar 

  • West, M. (1983). Generalized linear models: scale parameters, outlier accommodation and prior distributions.Bayesian Statiscs 2 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.), Amsterdam: North-Holland, 531–558. (with discussion).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, G. Bayesian inference in location-scale distributions with independent bivariate priors. Test 6, 137–157 (1997). https://doi.org/10.1007/BF02564431

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02564431

Keywords

Navigation