Skip to main content
Log in

Noninformative priors for maximal invariant parameter in group models

  • Published:
Test Aims and scope Submit manuscript

Summary

For an Euclidean groupG acting freely on the parameter space, we derive, among several noninformative priors, the reference priors of Berger-Bernardo and Chang-Eaves for our parameter of interest θ1, a scalar maximal invariant parametric function. Identifying the nuisance parameter vector with the group element, we derive a simple structure of the information matrix which is used to obtain different noninformative priors. We compare these priors using the marginalization paradox and the probability-matching criteria. The Chang-Eaves and the Berger-Bernardo reference priors appear to be the most attractive choice. Several illustrative examples are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayarri, M. J. (1981). Inferencia Bayesiana sobre el coefficiente de correlación de una población normal bivariante.Trab. Estadist. 32, 18–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J. (1985).Statistical Decision Theory and Bayesian Analysis. Second Edition. New York: Springer Verlag.

    MATH  Google Scholar 

  • Berger, J. (1992). Discussion of Ghosh and Mukerjee.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford: University Press4, 205–206.

    Google Scholar 

  • Berger, J. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors.J. Amer. Statist. Assoc. 84, 200–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J. and Bernardo, J. M. (1992a). On the development of the reference prior method.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford: University Press, 35–60, (with discussion).

    Google Scholar 

  • Berger, J. and Bernardo, J. M. (1992b). Ordered group reference priors with applications to the multinomial problem.Biometrika 79, 25–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, T. and Eaves, D. (1990). Reference priors for the orbit in a group model.Ann. Statist. 8, 1595–614.

    MathSciNet  Google Scholar 

  • Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference.J. Roy. Statist. Soc. B 49, 1–39, (with discussion).

    MathSciNet  MATH  Google Scholar 

  • Datta, G. S. and Ghosh, J. K. (1994). Noninformative priors for maximal invariant parameter in group models.Tech. Rep. 94-4, Dept. of Statistics, University of Georgia.

  • Datta, G. S. and Ghosh, J. K. (1995). On priors providing frequentist validity for Bayesian inference.Biometrika 82, 37–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Dawid, A. P., Stone, M. and Zidek, J. V. (1973). Marginalization paradoxes in Bayesian and structural inferences.J. Roy. Statist. Soc. B 35, 189–233, (with discussion).

    MathSciNet  MATH  Google Scholar 

  • Geisser, S. (1965). Bayesian estimation in multivariate analysis.Ann. Math. Statist. 36, 150–159.

    MathSciNet  MATH  Google Scholar 

  • Ghosh, J. K. (1994).Higher Order Asymptotics. IMS and ASA. Hayward, California, USA.

    Google Scholar 

  • Ghosh, J. K. and Mukerjee, R. (1992a). Non-informative priors.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.), Oxford: University Press, 195–210, (with discussion).

    Google Scholar 

  • Ghosh, J. K. and Mukerjee, R. (1992b). Bayesian and frequentist Bartlett corrections for likelihood ratio and conditional likelihood ratio tests.J. Roy. Statist. Soc. B 54, 867–75.

    MathSciNet  MATH  Google Scholar 

  • Lehmann, E. L. (1986).Testing Statistical Hypotheses, Second Edition. New York: Wiley.

    MATH  Google Scholar 

  • Lindley, D. V. (1965).Introduction to Probability and Statistics from a Bayesian Viewpoint. Cambridge: University Press.

    MATH  Google Scholar 

  • Muirhead, R. J. (1982).Aspects of Multivariate Statistical Theory. New York: Wiley.

    MATH  Google Scholar 

  • Peers, H. W. (1965). On confidence points and Bayesian probability points in the case of several parameters.J. Roy. Statist. Soc. B 27, 9–16.

    MathSciNet  MATH  Google Scholar 

  • Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution.Sequential Methods in Statistics. Banach Center Publications 16, Warsaw PWN, Polish Scientific Publishers, 485–514.

  • Tibshirani, R. J. (1989). Noninformative priors for one parameter of many.Biometrika 76, 604–8.

    Article  MathSciNet  MATH  Google Scholar 

  • Wijsman, R. A. (1990).Invariant Measures on Groups and their Use in Statistics. IMS. Hayward, California, U.S.A.

    MATH  Google Scholar 

  • Ye, K. and Berger, J. (1991). Noninformative priors for inferences in exponential regression models.Biometrika 78, 645–56.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, G.S., Ghosh, J.K. Noninformative priors for maximal invariant parameter in group models. Test 4, 95–114 (1995). https://doi.org/10.1007/BF02563105

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02563105

Keywords

Navigation