Advertisement

Test

, Volume 5, Issue 2, pp 395–409 | Cite as

Bayesian robustness on constrained density band classes

  • M. Perone-Pacifico
  • G. Salinetti
  • L. Tardella
Article

Summary

An interesting class in Bayesian robustness is a ‘band’ of priors: its flexibility allows for different tail behaviours while excluding point masses. In this paper, we consider density band classes of priors with additional constraints modelling different available prior information: quantiles, moments, constraints derived from the probability of observables or from the dependence structure in a multidimensional setting. The proposed techniques allow us to obtain the range of quantities of interest that are not linear or ratio linear functionals. Numerical examples are provided.

Keywords

Bayesian robustness Density band class Neyman and pearson lemma Linear constrained optimization Fractional optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, J. O. (1994). An overview of robust Bayesian analysis.Test 3, 5–126, (with discussion).CrossRefMathSciNetGoogle Scholar
  2. Berger, J. O. and Moreno, E. (1994). Bayesian robustness in bidimensional models: prior independence.J. Statist. Plann. Inference 40, 161–176.CrossRefMathSciNetGoogle Scholar
  3. Lavine, M. (1991a). Sensitivity in Bayesian statistics: the prior and the likelihood.J. Amer. Statist. Assoc. 86, 396–399.CrossRefMathSciNetGoogle Scholar
  4. Lavine, M. (1991b). An approach to robust Bayesian analysis for multidimensional parameter spaces.J. Amer. Statist. Assoc. 86, 400–403.CrossRefMathSciNetGoogle Scholar
  5. Lehmann, E. L. (1986).Testing Statistical Hypotheses, (2nd ed.) New York: Wiley.zbMATHGoogle Scholar
  6. Moreno, E. and Pericchi, L.R. (1993). Prior assessments for bands of probability measures: Empirical Bayes analysis.Test 2, 101–110.CrossRefMathSciNetGoogle Scholar
  7. Perone Pacifico, M. (1995).Metodologie per la Robustezza Bayesiana: Un Approccio Unificante. Ph.D. Thesis, Univ. ‘La Sapienza’, Roma.Google Scholar
  8. Perone Pacifico, M., Salinetti, G. and Tardella, L. (1994). Bayesian robustness in the density bounded class through the Neyman and Pearson Lemma.Tech. Rep. A14, di Statistica, Univ. ‘La Sapienza’, Roma.Google Scholar
  9. Salinetti, G. (1994). Discussion to “An overview of robust Bayesian analysis”,Test 3, 109–115.Google Scholar
  10. Schaible, S. (1981). A survey of fractional programming.Generalized concavity in Optimization and Economics (S. Schaible and W. T. Ziemba eds.) New York: Academic Press, 417–440.Google Scholar
  11. Sivaganesan, S. and Berger, J. O. (1989). Ranges of posterior measures for priors with unimodal contaminations.Ann. Statist. 17, 868–889.MathSciNetGoogle Scholar
  12. Wasserman, L. (1992). Recent Methodological advances in robust Bayesian inference.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) Oxford: University Press, 483–502, (with discussion).Google Scholar

Copyright information

© SEIO 1996

Authors and Affiliations

  • M. Perone-Pacifico
    • 1
  • G. Salinetti
    • 1
  • L. Tardella
    • 1
  1. 1.Dip. di Statistica, Probabilità e Statistiche ApplicateUniv. di Roma “La Sapienza”Roma

Personalised recommendations