Skip to main content
Log in

Selective pressure by antibiotics as feed additives

  • Published:
Infection Aims and scope Submit manuscript

Summary

Antibacterial substances are used in considerable amounts as growth promoters in animal husbandry. There are, however, incalculable risks for human health resulting from the use of particular feed additives. Even 30 years ago the detection of transferable antibiotic resistance inEnterobacteriaceae led to the demand that antibiotics used in human chemotherapy, or for which cross-resistance against human therapeutics has been demonstrated, should be prohibited as growth promoters. The application of molecular methods to typing and characterization of bacteria and their resistance genes has provided more concise evidence for the transfer of antibiotic resistance among animal husbandry and humans as to resistance to glycopeptides (vanA gene cluster) and to streptogramins (satA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, J.: Inactivation of antibiotics and dissemination of resistance genes. Science 341 (1994a) 375.

    Article  Google Scholar 

  2. Levy, S. B.: Balancing the drug resistance equation. Trends Microbiol. 2 (1994) 341.

    Article  PubMed  CAS  Google Scholar 

  3. Levy, S. B., Fitzgerald, G. B., Macone, A. B.: Spread to antibiotic resistance plasmids from chicken to chicken and from chicken to man. Nature 260 (1976) 40–42.

    Article  PubMed  CAS  Google Scholar 

  4. Linton, A. H., Howe, K., Bennet, P. M., Richmond, M. H.: The colonization of the human gut by antibiotic-resistantEscherichia coli from chickens. J. Appl. Bacteriol. 43 (1977) 465–469.

    PubMed  CAS  Google Scholar 

  5. Smith, H. W.: The transfer of antibiotic resistance between strains of enterobacteria in chicken, calves and pigs. J. Med. Microbiol. 3 (1970) 165–180.

    Article  PubMed  CAS  Google Scholar 

  6. Tschäpe, H., Rische, H.: Ökologie und epidemiologische Bedeutung der infektiösen Chemotherapeutikaresistenz. J. A. Barth, Leipzig 1974.

    Google Scholar 

  7. N. N.: Report of joint committee on the use of antibiotics in animal husbandry and veterinary medicine. Swann Committee, Her Majesty's Stationery Office, London, September 1969.

    Google Scholar 

  8. Helmuth, R., Bulling, E. (eds.): Criteria and methods for the microbiological evaluation of growth promoters in animal feeds. Bundesgesundheitsamt Berlin 1985.

    Google Scholar 

  9. Arthur, M., Courvalin, P.: Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37 (1993) 1563–1571.

    PubMed  CAS  Google Scholar 

  10. Arthur, M., Reynolds, P., Courvalin, P.: Glycopeptide resistance in enterococci. Trends Microbiol. 4 (1996) 401–407.

    Article  PubMed  CAS  Google Scholar 

  11. Klare, I., Witte, W.: Glykopeptidresistente Enterokokken: Auftreten, Verbreitung, Resistenzübertragung, Bedeutung. Wien Klin. Wochenschr. 109 (1997) 293–300.

    CAS  Google Scholar 

  12. Klare, I., Heier, H., Claus, H., Witte, W.: Environmental strains ofEnterococcus faecium with inducible high-level resistance to glycopeptides. FEMS Microbiol. Lett. 106 (1993) 23–90.

    Article  PubMed  CAS  Google Scholar 

  13. Klare, I., Heier, H., Claus, H., Reissbrodt, R., Witte, W.:vanA-mediated high-level glycopeptide resistance inEnterococcus faecium from animal husbandry. FEMS Microbiol. Lett. 125 (1995) 165–172.

    Article  PubMed  CAS  Google Scholar 

  14. Chadwick, P. R., Woodford, N., Banell, R. A., Oppenheim, B. A.: Glycopeptide-resistant enterococci isolated from uncooked meat. J. Antimicrob. Chemother. 38 (1996) 908–909.

    Article  PubMed  CAS  Google Scholar 

  15. Klare, I., Heier, H., Claus, H., Böhme, G., Marin, S., Seltmann, G., Hakenbeck, R., Atanassova, V., Witte, W.:Enterococcus faecium strains withvanA-mediated high-level glycopeptide resistance isolated from animal food-stuffs and fecal samples of humans in the community. Microb Drug Resist. 1 (1995) 265–272.

    PubMed  CAS  Google Scholar 

  16. Schouten, M. A., Voss, A.: VRE and meat. Lancet 349 (1997) 1258.

    Article  PubMed  CAS  Google Scholar 

  17. Werner, G., Klare, I., Witte, W.: Arrangement of thevanA gene cluster in enterococci of different ecological origin. FEMS Microbiol. Lett. 155 (1997) 55–61.

    Article  PubMed  CAS  Google Scholar 

  18. Jensen, L. B., Ahrens, P., Dons, L., Jones, R., Hammerum, A. M., Aarestrup, F. M.: Molecular analysis of Tn1546 inEnterococcus faecium isolated from animals and humans. J. Clin. Microbiol. 36 (1998) 437–442.

    PubMed  CAS  Google Scholar 

  19. Woodford, N., Adebiyi, A. M., Palepon, M. F., Cookson, B.: Diversity ofvanA glycopeptide resistance elements in enterococci from human and nonhuman sources. Antimicrob. Agents Chemother. 42 (1998) 502–508.

    PubMed  CAS  Google Scholar 

  20. Simonsen, G., Haaheim, H., Dahl, K. H., Kruse, H., Loveseth, A., Olsvik, O., Sundsfjord, A.: Transmission ofvanA type vancomycin-resistant enterococci andvanA resistant elements between chicken and humans at avoparcin exposed farms. Microb Drug Res. 4 (1998) 313–318.

    Article  CAS  Google Scholar 

  21. Van den Braak, N., Van Belkum, A., Keulen, J., Vliegenhart, J., Verbrugh, H. A., Endz, H. P.: Molecular characterization of vancomycin-resistant enterococci from hospitalized patients and poultry products in The Netherlands. J. Clin. Microbiol. 36 (1998) 1927–1932.

    PubMed  Google Scholar 

  22. Werner, G., Klare, I., Witte, W.: Association between quinupristin/dalfopristin resistance in glycopeptide-resistantEnterococcus faecium and the use of additives in animal feed. Eur. J. Clin. Microbiol. Infect. Dis. 17 (1998) 401–402.

    PubMed  CAS  Google Scholar 

  23. WHO: The medical impact of the use of antimicrobials in food animals. Report of a WHO meeting. WHO/EMC/ZOO/97.4 (1997).

  24. Witte, W.: Impact of antibiotic use in animal feeding on resistance of bacterial pathogens in humans. In:Levy, S. B. (ed.): Antibiotic resistance: origins, evolution, selection, and spread. Wiley, Chichester 1997, pp. 71–85.

    Google Scholar 

  25. Witte, W.: Medical consequences of antibiotic use in agriculture. Science 279 (1998) 996–997.

    Article  PubMed  CAS  Google Scholar 

  26. Klare, I., Badstübner, D., Konstabel, C., Böhme, G., Claus, H., Witte, W.: Decreased incidence of VanA type vancomycin-resistant enterococci isolated from poultry meat and from faecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb. Drug Resist. 5 (1999) (in press).

  27. Kirst, H. A., Thompson, D. C., Nicas, Th.: Historical yearly usage of vancomycin. Antimicrob. Agents Chemother. 42 (1998) 1303–1304.

    PubMed  CAS  Google Scholar 

  28. Antimicrobial Feed Additives Commission: Antimicrobial feed additives. Governmental Official Reports 132, Stockholm 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witte, W., Klare, I. & Werner, G. Selective pressure by antibiotics as feed additives. Infection 27 (Suppl 2), S35–S38 (1999). https://doi.org/10.1007/BF02561669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02561669

Keywords

Navigation